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PREFACE

In the auricular strueture introduced by this University for students of Post- Graduale
degrw programme, the opportunity to pursue Post-Graduate course in Subject introduced by
this University is equally available to all learners. Insiead of being guided by any presumption
about ability level, it would perhaps stand to reason if receptivity of a learner is judged in the
course of the learning process. That would be entirely in keeping with the objectives of open
education which does not believe in artificial differentiation.

Keeping this in view, study materials of the Post-Graduate level in different subjects are
being prepared on the basis of a well laid-out syllabus. The course structure combines the
best elements in the approved syllabi of Central and State Universities in respective subjects.
It has been so designed as to be upgradable with the addition of new information as well as
results of fresh thinking and analysis,

The accepted methoddlogy of distance education has been followed in the preparation
of these study materials. Co-operation in every form of experienced scholars is indispensable
for a work of this kind. We, therefore, owe an enormous debt of gratitude to everyone whose
tireless efforts went into the writing, editing and devising ol a proper lay-oul of the materials.
Practically speaking, their role amounts to an involvement in invisible teaching. For, whoever
makes use of these study materials would virtually derive the benefit of learning under their
collective care without each being seen by the other.

The more a learner would seriously pursue these study materials the easier it will be for
him or her to reach out to larger horizons of a subject. Care has also been taken to make
the language lucid and presentation attractive so mat they may be rated as quality self-
learning materials, If anything remains still obscure or difficult to follow, arrangements are
there to come to terms with them through the counselling sessions regularly available at the
network of study centres set up by the Universily,

Needless to add, a great deal of these efforts is still experimental-in fact, pioneering in
certain areas, Naturally, there is every possibility of some lapse or deficiency here and there.
However, these do admit of rectification and [uriher improvement in due course. On the
whole. therefore, these study materials are expecied to evoke wider appreciation the more
they receive serious attention of all concerned.

Professor (Dr.) Subha Sankar Sarkar
Vice-Chancellor
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UNIT -1

§ 1.1 Calculus on R" :

Let R denote the set of real numbers. For an integer n > 0, let R" be the cartesian product

BB R =R
‘L__—V'__-J

ntimes

of the sel of all urdered n-tuples (xl,--,x") of real numbers. Tndividual n-tuple will be denoted
at times by a single letter, e.g. x = (xl o 27),y= (yl e, y*) and soon.
Co-ordinate functions : Let y=(al, 4%, 2")e R". Then, the functions u; 1 R" — R defined

h:.r Hf.{.!.'l._‘l,'z,- ! -_1;1' i) = _\‘,"
We are now going to define a function to be differentiable of class ¢~ .

A real-valued function f:U CR"—= R, |
U being an open sct of RY, is said to be of class ckif

i) all its partial derivatives of order less than or equal to k exist and ‘
ii) are continuous functions at every point of U. '
By class %, we mean that [ is merely continuous from U to R. By class ¢, we mean that ‘

that partial derivatives of all orders of Fexist and are continuous at every point of U, In this case,
f is said Lo be a smooth function.

Note : By class ¢ on U, we mean that f is real analytic on U ie, expandable I 4 powWer

series about each point on U. A €% function is & ™ function but the converse is not true.

Exercise : 1. Let [:R— R be defined by
il [=
fix)=e &, x#0
=0, x=0
Show that £ is a differentiable function of class By
Solution : Note that
o= F @)= flo)y _ lim &%
I Gj_h-—}ﬂ 5 T h—=0 p
Apply L'Hospital’s Rule, on taking, hi= El we see that j — o EIVES 1t — e
(
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lim 1
U —p o= 2uet

- lim gt
H—rea 2y

=0

1
Again, £(0)=2x3¢ £, x20

L ) = hiﬂﬂ S0 +I1;—fr[ﬂl and on putting %zar. we et

" I 4(ea
Fiai= = 2 [—]
W —3 oo it oa
Applying L' Hospital rule successively, we find

5 _ lim gg?
A

lim 42
_H—}W gt

_lim 81
=3 o= Qe

lim 4
H—3oa gt

=0



Proceding in this manner, we can show thal.

=0, for n=1, 2, -

Hence f is a function of class .

Amapping f:U =V

of an open set Uc R™ to an open sel V o RO is called & homeomorphisi if
i) fis bijective i.c. one (o one and onto, as well as

i) f, -1 are continuous.

Exercise : 2. Let f:R—= R be such that

fix)=>5x+3

Show that { is a homoeomorphism on R.

3. Let f:R— R be delined by
Fla)=x

Test i) whether f is a dilferentiable function of class ¢ or not

ii] whether [ is a homeomorphism or not. | Ans. : i} f is of class i
ii) f is homeomorphism |
Solution & 2. Note that
flx)=F(y=5x-»
s f(x)=f(y) if and only if x=Y%
Hence f is one one.
Let y=5x+3

y=3
5

X =
and hence ' R— R is delined as

I s,
[ ==

Again, Flf-"y)) =y and [ I( f(x)) =, Thusfis onto.
Consequently fis bijective.




Both f, £-' are continuous functions, (being polynomial functions) fisa

homeomorphism
on K.

Note : (i) If f:UcR" s R™isa mapping, such that
. f{x1r..,1r-'|) — [j"]{'_r"...’_1N}1_...j'w|{x|1.,.._1-m‘jj
where f/(x)=ulef, 1<j<m, u' being co-ordinate functions on R™

R.’P R"I'

we define the Jacobian matrix of fat (x',..-, x"), denoted by 1, as

£

o' o' ot
R
of? ot of?
al 22 o

(ii) In particular, when m=n ie., il f:UcR"— R" isamapping such that,
it f=(f', f2,.-,f") has continuous partial derivatives i.e. if each f! j=1.2.... . has
continuous partial derivatives on U, we say that fis continuously differentiable on {7 = p".
(D IF f=(f -, ") is continuously differentiable on 1/ r" and the Jacobian is non-
zero, then f is one-one on 1,
Exercise : 4, Consider the mapping

0 R*— R?
given by

¢  y =x'coss?

y* = ylginx?

10



Show that ¢ is one-lo-one on a sufficiently small neighbourhood of each point (x',x*) of
R? with x!' #0.

Solution : The given mapping

o =(¢!,0%): R - R? isgivenby ¢' = cosx?, ¢F =x' sinx?

Then, we have

a! 2! 297 2y
i 7 = | P i gl £k o | | o ol
=eosEY, — = —X sinx T —sinx?, 2= x'cosx
! da? todx! dx?

ap' L . : ; ! .
Hence each 33,—, i, j=1,2 is continuous for all values of st and x? inR% Thus ¢ is

continuously differentiable on R,

Again the Jacobian is given by

%

I= | 30 37 — 4120 ifandonly if x! #0 in R%
9> 9o
g ox?

Consequently, ¢ is one-to-one ona sufficiently small neighbourhood of cach point (x* o

of R2 with x! 0.

A mapping

; f:U—=V
of an open set U < R" onto an open set V. R is called a C¥ — diffegmorphism, k =1 if
i) £ is a homeomorphism of U onto V and -

if) £, [ are of class CK.
when fisa ¢~ —diffcomorphism, we simply say dil[comorphism.
Exercise : 5. Lel ¢: R? — R? be defined by

i (1,0) = (ve 1)



Determine whether ¢ is a diffeomorphism or not.
G.Let  ¢:R?— R be defined by
B (aha?)= (e + a2, xlet — 52y
Show that ¢ isa (Eiﬂ"ﬁ:umﬁrphi&m. | Ans. 5. 6 iza diffeomorphism )
_ Rrn :
Fori=L-.n;let y':R" 5 R R
e

be the coordinate functions an R" ie. for cvery pER"

L 1) w'(p)=p' where p=(p!,--, p")

Such wiy are continuous functions from R" — R., We call this n-tuple of functions
of R".

(u' 0?4y the standard co-ordinate svsten

If filic Ry — R

is a mapping defined on U = R then, [ is determined by its co-ordinate functions
(f ey f") where

1.2) fi=wlof , i= L n

and each [, < R" — R are real valued functions, defined on an open subsel U of RT

Thus forevery p e U < RP

FApy=(u' e ) p) =u' (f(p)) where f(p)=q=(g",q")
=uiy'g") =4 by 1.1)

1.3)  consequently F(p)=(f'(p)f2p)if™(p). ¥ pellcRY

The map [ is of class & if cach of its co-ordinate functions Flui=1, -, n Isof class ck,



§ 1.2 Ditférentiable Mainlold :
Let M be a Hausdortt, second countable space. If every point of M has a neighbourhood

homeomorphic to an open set in RY, then :
le

RP
‘ i’
> R
o RN o)

amanifold foreach pe M, there existsa neighbourhood U

M is said to be a manifold. Thus in

of pe M anda homeomorphism ¢ of U onto an open subset of RE. The pair (U,4) iscalled

a charl, _
Each such chart (U ) on M induces a set ol n reul valued functions on U delined by

21) ii=uet i=1,2,-n

where 1 g are defined by (1.1) and it is (o be noted that whatever be the point p and the

neighbourhood U i =1,2, -1 always represent co-ordinate functions. The functions

{xl,x%--- ") are called coordinale nelions or a coordinate system on U and U is called the

domain of the coordinate system. The charl (U,4) is sometimes called an n-coordinate chart.

Let (V,y) be another chartulp, which overlaps the previous chart (U, ), Let (y!, o 0")

be local coordinate system on 'Y of p, s0 that

¢—I.
S
@ /
o(UMV)
M
. _
£



22) yi=ulay, .0=12,--.n
We can construct Iwo composile maps

23) oy g UAVICR? ¢ (UnV)c R
Gy (U AVIER 2w (U AV R
If these maps are of class ¢*, we say that the two charts (U,4) and (Vo) are &-
related. If g e b (L V) and
o UnVIcR" syl nV)c RY
is a mapping defined on an open set in R, we wrile

24) g(@)=y('(q)

Exercise : 1 Find a functional relation between the two local coordinate systems defined
in the overlap region of any point of a manifold M.

Solution : given that
ged (U V),
glg) =(wed')(g) by 2.4)
-Let dlp)=q, where pell V. Then
g(0(p)) = (w0~ )(o(p)) = wip)
or  ul(g(d(p))=u' (W(p)); i=1,2,,n
o gl(e(py)=wip) by L1}
or  gi(x(p)ext(p)= ¥ (p) as
dpy=u'(pip))=0'(p)
) =(01(p)) -+ 4" (p) = (x' (p)y -, x"(p)) and

Yip)=u (W(p)=wi(p) i=12,n.
consequently,

yo=gi(xl, a2, x")
Note : If we consider

g =0 (v (@),
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then one finds x! = g'(y',¥%, . y" ) i=1en

A collection 2 ={(U,.¢;)},i< A, (an index set) of ¢k related charts are said to be maximal

collection if a co-ordinate pair (V, W ), ¢¥ related with every chart is also a member of 0.

A maximal collection of ck-related charts is called a ¢k-atlas, A c* n-dimensional differen-
tiable manifold M is an n-dimensional manifold M together with a chatlas.

Unless otherwise stated, we shall consider a differentia

Examples : 1. R with the usual topology is an example of a differentiable manifold with
respeet to the atlas (U, ¢ ) where U =R™ and ¢ = the identity transformation.

2. Let 8! be the circle in the xy plane R2, centered at the origin and of radius 1. We give
5!, the topoiogy of a subspace of R?. Let

Uy=lp=(xyesly>0]

U,={p=(xy)es|y<0]

U, =(p=_(x3)e sx =0}

U,={p=(x.y)es|x<0}
Then each U, is an open subsct of S and §'=U/ U, i=1,2,3,4
Let 1= (=1, 1) be an open interval of R and we define

$,:1/; = 1R be such that

b (5 ))=x e ¢ () =(xy)y>0

b,: U, — IR be such that

B (xy)=x ie. ql-;,"J (x)=(x ) =<0

¢,:U;— LR be such that

(HESDES Le. ¢y (1) =(x,),x>0

b, U, — ISR be such that

ba(x )=y L. gy ()= ()X <0
Note that each ¢, is 2 homeomorphism on R and thus each (u,,6,) isachartof §° Now

U nU, =6, UnlU;=1" quadnant, U/ nl, =20 quadeant, U, nU, =4" quadrant,
U, U, =3 quadrant,



Then
A={(U,,0,):i=1,2,3,4) is an atlas of s
As Unly#d, let pel, nl,, then
(@ 203" ) y)=0¢,(x,y)=x and
(y=d ' Wx)=dy(x, )=y
Thus each ¢, = 3! and by 207! is of class €. Similarly, it can be shown thal each
gty Gyl @07, Gyod3, b, b7, ty=d3', isofclass C7 and hence s! is an one

dimensional differentiable manifold with an atlas {{U,-,qJ‘-J}r.:! N

lixercise : 2. Let (M", A) be a differentiable manifold witha ¢~ atlus A, Let peM. Then
there exists (U, ¢) € A such that pe U and $(p)=0.
Note : 1. Tt is to be noted that every second countable, Hausdorff Space M admils parti-

tions of unity, Partitions of unity admits Riemannian metric. Our aim is to study a Riemannian
Manifold and for this reason we consider such topological spaces for i manifold,

2. Ttis enough to consider only a topological space for studying mainfold,
§ L3. Differentiable Mapping :

Let M be an n-dimensional and M be an m-dimensional differentiable manifold, A
mapping f: M — N .

15 said o be a differentiable mapping of class ¢, if for every chart (U, ¢ ) containing p of M
and every chart (V, y ) containing f(p) of N

[ 6



i 1 f() < Vand
ii) the mapping wo f o d~1:¢ () = R" — w (V) = R™ is of class c¥,

By a differentiable mapping, we shall mean, unless otherwise stated, a mapping of
class €.

If (x!, e, x™) and (', ---, y™) are respectively the local coordinate systems defined ina
neighbourhood U of p of M and V of f(p) of N, then it can be shown, as done earlier

32} }anfzgj{x].n.rxn}, J"=|,"',H’I'
where g is a differentiable function defined on V = N and

33) s@=(wefod)g) qb ).

Let M and N be two n-dimensional differentiable manifolds. A mapping
fiM—» N
is called a diffeomorphism if
i) fand f~! are differentiable mappings of class C~
i)  fisabijection
In such Eﬂses, M and N are said to be diffeomorphic to each other,

Exercise : 1. Let M and N be two ditferentiable manifolds with M=N=R. Let (1J, ¢ ) and
(V, w ) be two charts on M and N respectively, where

U=R
¢ : U — R be the identity mapping and
V=R
v : V — R be the mapping defined by

yix)=x"

Show that the two structures defined on R are not € -related even though M and N ure
diffeomorphic where

fiM—=N

1,




is defined by
@ =1
Hint : Note that, (yeo fedp™) (x)=x and (p=y ') x)=x"*, Thus poy! is of class
C” but ¢poy! isnotof class C* . Again
(wefod)(x)=x
Also f(y) = f(x) ifand only if ¥ =x. Thus f is one-one. Finally
F Y y)y= 3, sothat

FF1O) =y and fY(f(x))=x. Thusf is a bijection.
Mote : A diffeomorphism f of M onto itself is called a trapsformation of M.

A real-valued function on M : i.e.

f:M =R

is said to be a differentiable functipn of class C™ , if for every chart (U, ¢) containing p of M,
the function

34) fedlip(U)cR"— R

is of class C .

We shall olici denote by F(M), the set of all differentiable functions on M and will
sometimes denote by F(p), the set of functions on M which are differentiable al p of M.

18



It 15 to be noted that such F(M) is
i) an algebra over R
iy aring over R
iif) an associative algebra over R and
iv) a module over R

Where the defining relations are
a) (f +e)p)=f(p)+sip)
b) (fe)(p)=F(pep)

c) (MNp)=2f(p), VYV i.geF(M), LeR, peM.

% 1.4. Differentiable Curve :

We are now in a position to define a curve on a manifold.

A differentiable curve through p in M of class ¢ is a differentiable mapping

:la, bl R— M, numely the restriction of a differentiable mapping of class
¢ of an open interval | ¢, d [ containing [ a, b ].

such that

4.1) alt)=p ,asiysb

Also

42) (5 o) @)=l o) (o(t)) =l ($ (o (1)) =w! (6" (1), 0" (1)) = &' (1)

We write it as
43) x'(ny=o'(r)

The tangent vector fo the curve a(f) at p is a function

13



X,: F{p}—-)_ﬁ'
defined by

4.4) pr=[gd,‘f{¢(r))]'_r =[ lim f{u(rHr}-f{cr{:y}

h—0 h

where p=oalty), fF(p)

It can be shown that it satisfies

45) X, (af +bg)=a(X,f)+h(X,g) ity

4.6) Xp{f3)=£(ﬁ}x of +F(P)X 8 fogeF(p) : Leibnitz Product Rule.

Note : Each function X : F (p) — R, cannot be a fangent vector to some curve at p e M,
unless it is a linear function and satisfies Leibnitz Product Rule.

Exercises : 1. Let a curve ¢ on R" be given by
o =a' +br, i=12,.n
Find the tangent vector to the curve o at the point (a'),

2z, If C is a constant function on M and X is a tangent vector to some curve o at peM,
then X, C=0

[Ans. i) (01,52, b")

ii) use 4.5), 4.6) and the definition

of constant function,
Let us define

47 (X, +Y)f=X,f+Y,f
48) (X,)=bX,f , beR

If we denote the set of tangent vectorstoMatp by T (I'u'[j then from 4.7) and 4.8)

it is easy to verify that T {M} 15 & vector space over R, We are nuw going to determine the basis
of such vector space.

Foreachi=1, ..., n, we define a mapping

357’— F(p)— R

20



by

[
49} [E}TJFI [atiﬂ'}]{;ﬂ

Mote that

elaf +bg)
[%)P{ﬂf +bg) = [%;{ﬁi]“’} by 4.9) , a, bR, [ g=F (p)

:( ’(I]]{F] [ PRI ]EP} by a) of 1.3

[ )EP} (a {r}] by &) of 1.3
(o), /o)

Thus such a mapping satisfies linearity property. It can be shown that
g\ = 08 Lk
(&), wor=sor) 7+10(G) &

Let us define a differentiable curve

g [a.b]lck > M

by
410) o) =o' () +1 , for fixed i
{ D=0, F=1 2l =14 s

then

{i 3 (o(6) doi(r)

o da'(r) dr }l:ﬂu by chain rule

[ﬁ;f '[Ertir}}]rq =

Ul

| 9 :
_(ax! (r]] sttg) fIDT ﬁxﬂd E, b}' (43:]

21



_
axi (1)

(m

=(i] f by (4.9
o), y (4.9)

) a :
Thus we can claim thal each [;] i=12,--,n is a tangent vector (o the curve o
e

defined above, at p=o(r,).

Again from the definition of the tangent vector,

X,f =< f(o®),

by chain rﬁk:

" iaf(ﬂ‘{ﬂ]‘dﬁ"[rj
RO

_&(dxi@)) (o)
‘E( di J 26 (1) by i44)

=iy

_ o ( dxie) 2 N
i=1 dt =iy a_f'l{f} F

We write il as

L. Fi
411) X,,=§ﬁ’(ﬂ][ﬁl where

d i
4.12) 9;‘{.»}{ 'rdf”] » Fe T
=i

Thuseach E' : M — R, i =1,.-, n isa differentiable function and every tangenl vector,

say Kp, to some curve, say off) at p=o(r,) can be expressed as a linear combination of the

d
tangent vector 37 i=1,-,n to the curve ¢ defined in (4.10)
£ axi (1)

22



If possible, for a given linear combination of the form bt F)[}E—_,) , where £l s are
functions on M, let us define a curve o by

g (=c'(t)+E(p),aspy2h

then it can be shown that the tangent vector to this curve is 3 E'( p][é%)p
If we assume that’
zE o) =0

then,

ZEU)[-%} 1k =0 where y¢: M — R, K=12,--n.
i P

: Ak
or 38 {p}('—,.] =0
zf" ax' ),
LoEN(p)=0. for k=1,2,--m.
Thus the set {( a’i;) A=l H} is linearly independent. Hence we state.
"

Theorem 1: 1f (x',---,x") is & local coordinate system in a neighbourhood U of p £ M,
then, the basis of the tangent space Tp(M) is given by

(&)~

Let us define T(M) = , U T, (M). This T(M) is called the tangent space of M.

23



§ 1.5. Vector Ficld :

In elassical notation, if to cach point p of R? or in a domuin U of R?, a vector
o p—>alp)
is specified, then, we say that a vector field is given on R? or in a domain U of R3,

A vector field X on M is a correspondance that associates to cach point peM, a
ve,cmrx_p = TP{M]. In fact, if f & F(M), then Xfis defined to be a real-valued function on M,
defined as follows

5.1) (XA () =X, f

A vector field X is called differentialle if Xfis so forevery f e F (M), Using (4.11) of g 1.4,
a vector field X may be expressed as

5]

50 X=Y1Y 3

where £/ 's are differentiable functions on M.
Let (M) denote the set of all differentiable vector fields on M. We define
5.3) (X +Y)f =Xf +Yf
' { (bX)f =b(XF)
It is easy to verify that y(M) is a vector space over R.

Also, for every fe F(M), fX is defined to be a vector field on M, defined as

54) (50 () =F ()X,
Let us define a mappingas  [,]: F(M) — F (M) as

35 [X Y If=X(YN-YXN vX. Y ex(M)
Such a brackel is known as Lie bracket of X, Y,
Exercises : 1, Show that for every X, Y, Z in % (M), for every f, g in F(M),

) IX Y] ex(M) i) [bX, Y]=[X,bY]=b[X, Y],beR
m [X+Y,Z]=[X, Z] +[Y, Z] V) [X,Y+Z]=[X, Y]+[X, 2]

24



v) [X,X]=6 vi) [X,¥Y]=-[Y,X]
vi)  [X.LY, Z)|+[Y.[Z, X+[Z X, Y]]=# : Jacobi Tdentity

viil) [£X, gY] = (fg) [X, Y] + {f(Xe)}Y — {a(YDX]
a) [X, fY] =1 [X, Y] + (XDY

2. In terms of a local co-ordinate system
: [i _6_} L
1} Sl it

X, Y= Z( '——-Q 54‘3,:] a--whcrr:){ gl_ Y:gi_a_.

A Cn_mpicte [X, Y] where

d __5 = xl_a

N ==Y :
l} ! ot fx?

i) X =xix? %, Y=l
4, Prove that
i) % (M) is a F(M) module
Hints : 1. viii) Note that
(f(Yh)) (p) = f(p) (Yh), by (54) of § L.5)
=f(p Y, ! by (5.1) of § 1.5)
Again, {(fY)} (p) = (Y)(p)h by (5.1)
=f(p) Y,h by (54)
Thus  (f(Yh)}(p) = {(fY)h}(p), Vp
[(Yh) = (fY)h

25
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@. L6. Integral Curve :

In this article, we are going to give the geometrical interpretation of a vector field,

Let Y be a vector field on M. The assignment of the vector Yp

al each point pe Ul = M, is given hy

Yip=> Y, € T, (M)

A curve o is an integral curve of Y il the range of o is contained in U and for cvery

a =iy =b inthe domain [a, b] of o , the tangent vectorto o at o (fp) = p coincides with Ypie.

Yo =You,)

Vol =Yaunf : vf e F(M)
_[4d
_[E{fm){:}] by (4.4) of § 1.4

=iy
Using 4.11) & 1.4 one can write

;ﬂ"fp}[

a
-

chx

)p J o= [% (f o a_‘]l:r]-] where 7' 's are functions on M.,

Si=iy

-x(#9) (2)
_E[ dt ].rr.!I1 3)5‘ Pf
As { % =1, n} are linearly independent, we must have

or llf{c{r}}h!u = (ffii)
feify

or n' (al(r), ﬂz{f}-‘"-“"ff}’ﬂﬂ =[%J
I=ly

Using (4.3) of § 1.4 we get
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rl!

:ixi
(el (1), %2 0e), oee, X1 ()2 =[—--]
1=y E,{I "

Herce they are related by

6.1) 5-:% = [[xl ()2 ty 2" (r}}

I'xercises : 1. Find the integral carve of a zero vector.

2. Find the integral curve of the following vector field

1 i
) X=x'57

iy a% on B2

i) X =e* 3?7 on R

1"} X :§4

(x'F Eii’_ on R?

Solution : 2.i) From (6.1) of 8 1.6, we scc that

Whent =0, if x!

.di] — L d-xi —_ _]:'1
dt Toodt
21 2
o g,
X X
Tntegrating
logx! =t+C  , logx? =1+ D say, where C, D are integrating constant.

=p!, x*=p?, then from

xl = et and x? = De!
we find that
I;}i =, PE =D

Thus ¥ ¢ (p'e".

pe') is the integral curve of X passing through the point (p', p*)
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€. L7 Differential of a mapping :

Let
f:M— N

objects defined ohjects defined

on
)
Trip)

f* = pull back

be a a differentiable mapping of an n-dimensional manifold M to an m-dimensional manifold N,
Let F(p) denote the set of all differentinble fanctions it peMand F(f( pj] denote the set of all

differentiable functions at f(p) e N, Sucha map f, induces a map
I *:F(f(p))— F(p) ,usually called pull back map,
and is defined by
0 f @ =g=f. geF(f(p))
called the pull back of g by f, which salisfies
7.2) [ lag+bh) =a(f g) +b(f"h)
{ Figh)=f*(g)f h) where g.he F(f(p)) and abeRr

The map f, also induces a linear mapping
for T(M)— Tyipy(N)

such that
73 (LXp)e=X,z=1)=X, (1)

called the push forward of X by f, Such f, is also called derived linear map or Yacobian map or
ditferential map of f gn T (M)
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Let us write
7.4)  fo(X ) =(FeX)pm

We can also define push forward of X by f, geometrically, in the following
manner :

Given a differential mapping
f M= N:

the differéntial of fat p e M is the linear mapping
fo: T,(M) = Ty (N)

defined as follows

For each Xp e Ty (M), we choose a curve o(f) in M such that Xp is the tangent

vector to the curve o(f) al p=o(t,). Then fi(X ) is defined lo be the tangent vector to the

curve f (o(r)) at f(p)=f(alty))
Exercises :

1, If f is a differentiable map from a manifold M into another manifold N and g is a differ-
entiable map from N into another manifold L, then, show that

i) (gofla=gsof i) (gof) =f ey
2. If f is a transformation of M and g is a differentiable funetion on M, prove that
0 ful X, ¥]=fo[X,T]
i) fHAX)e)=X(fT)
i) felgX)=(gef N feX)
for all vector fields X, Y on M.

Solution : 1. By definition, f«(X,) is the tangenl vector to the curve f{ﬁ{r]} af

F(p)=f(olt,)) where Xp is the tangent vector to the curve o(f) at p =o(s,). Hence by
(44)of § 1.4
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(f(X,))e = [j—rg{f’(cirj}L“ geP(f(m)

= [g;{g of }[qm}}

1=ty

=X, (gof) byd4)of g 1.4
Hints 3. Givenihat
f:M s M

15 a transformation and hence for every peM, f(p)= g, Say.

Thus, p=f-'(q)
consequently, from 7.3) of § 1.7, we find that

{(rex,)ebs o= {x a0 DY, Wpem

o B ={%, N} @

or  (fu(X))e=(X(gor))f!

Using this relation, one can deduce the three results.

We are now going lo give a matrix representation of the linear mapping ..

Theorem 1 : If f is a mapping from an n-dimensional manifold M to an m-dimensional

manifold N, where (x',---,x") is the local co-ordinate system in a neighbourhood of a point p

of Mand (y',---y™) is the local co-ordinate system in a neighbourhood of f(p) of N, then

2 aafd ((a
f"[ ] r a [_] J_ I|:|
axl/p Eaﬂp L

Proof :  We write
3 & o)
f'( _] = LEJ [ ] v E=nn
)y ja N
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where g/'y are unknown to be determined

i

a _ i} I a_
or {f*(?i}T)}}'k —_E”r' [Ejﬂp}}'l where each y* =eF(f(p)) k=1,..m

i=1

using 7.3) of § 1.7, we find

a] &

1 (gt f)= a;d

[Gx, i ) :Y:'; ;
8

o ()00

ark
or ('—; : ] =af by (49)of § 14
»

D m afj a
)
axl Jp 2 ox . oypd Jtph

J=1

Thus

MNate : 1. The matrix of f., denoted by (f,) is given by

o' o' o
F T I T
gt a' af'

UI=30 3™ o
ﬂ it E,fm ajl‘ur
ox! axt  ax®

Note : 2, The kemel of f, is the set of X, ET;,(M} for which
fn{:(p] :ﬂ

The image of f, is the set of ¥,y €Tpipy (N) for which, there exists X', eT, (M) such

that
folX ) =Yr(m

MNow from a known theorem
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dim (kernel f.) + dim (Range f.) = dim TP@.-"[}.
We wrile it as
7.5) dim (kernel £,) + dim (Range f,) = dim T,(M) for each p « M
The dim (Range f,) is called the rank T,
If rank f, = dim TP{M} we say
i) f is an immersion if dim M < dim N and H(M) is an immersed submanifold of N

ii) f is an imbedding if f is one to one and an immersion and then (M) is an imbedded
submanifold of N

i} f is a submersion if dim M > dim N.
Exercises : 1. Show that
fiR—= R?
given by
f(t) = (& cost, sint)
is an immersion.

2. Find (f.) in the following cases

i) 1 R* — R2 given by f= ((x')? +2(x2)2 3x'x2)
ii) f: R? — R2given by f= (x‘e"i +x%, xte® —xi) at (0, 0)

where (x!,x?) are the local co-ordinates on R2

g. 1.8 f-related vector Ficld :

Let X and Y be fields on M and N respectively.

Then, forpeM, let X ETP{M] and Y ETEPJI:N] and such lha_t

8.1) Sl X p) =Yz

where fiM — N is a differentiable mapping and f, is already defined in the previous
article. In such a case, we say that the two vector fields X, Y are forelated,
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For g e F(f(p)) we see that

{f":xp}}g = rf{j}
Using 7.3) of § 1.7 and (5.1) of § 1.5 we find that
Xo(gef)=(¥g)f(p), vp
Then
82) X(gef)=Wg)f

If iz a transformation on M and
-fl*(xp} = Xf{pJ

we say that, X is f-related to itself or X is invariant under f. We also write it as

8.3) fiX=X

Exercises: 1. Let X; K(i=1, 2) be two f-related vector fields on M and N respectively.
Show that the vector fields [X;, X,] and [Y, Y] are also f-related.

2. Prove that two vector fields X, Y respectively on M and N are f-related if and only if
S X)g)=X{f"g)
where f: M — Nisa C” map.

3. If f is a transformation on M, show that, for every X eX(M), there exists a unique f-
related vector field to X.

Solution : 1. From the definition of the Lic bracket, we see that
[X1,X:)g  F) =Xi(Xa(g 1)) - Xaf Xyl £))
= X,((ae)f)- X2((Mg)f) by (8.2) above
={HLe)}f - (e f by (8.2) above

={hng) -HLM}f
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[X,. XoMge f)={[l,¥a]g}S from the definition of the Lie Bracket. Hence from 8.2),
one claims that X, %5] and [YI, Y,] are f-related.

§- 1.9 One parameter group of transformations on a manifold :

Definitioin
Let a mapping
p:RxM—> M
is defined by

bl p) = ¢, (p)

which satisfy

i) for each t eR, ¢(r, p)=¢,(p) is a transFormation on M and palpi=p
ii)forallt, s, t+s € R

()= 2, )P) =0, (p)

Then the family {:.’p,l: € R} of mappings is called a one-parameter group of transforma-
tions on M,

Exercise : 1. Let {$,It e R} be a one-parameter group of mappings on M. Show that
1) g, =)
it) {d,Ir € R} form an abelion group.
Let us set
9.1) (1) =b,(p)
Then ¥(#) is a differentiable curve on M such that
W(0)=¢o(p)=p by Def. (i) above

Such a curve is called the orbit through p of M. The tangent vectar, say 'Kp to the curve
yi(r) at p_is therefore

9.2) x;,f:[-%;{q:{r})l _ lim ffdn{p}]—f(m_ Yf e F(M)

ip =0 ¥



In this case, we say that {¢, 1t € R} induces the vector field X and X is called the generator
of {¢,}. The ;:urva ¥(t) defined by 9.1) is called the integral curve of X.
Exercises : 2. Show that the mapping
d:RxR*— R

defined by

bt p)=(p! +1, p2 +1, pP +1)

is a one-parameter group of transformations on M and the generator is given by

o.,0,8
ax! o dx?r et

3. Let M=R2and let
b:RxM— M
be defined by

tJP(I‘, (x J’]] = {Iﬂzr L e ) ]

Show that § defines a one-parameter group of transformation on R? and find its generator.

Note : Since every |-parameter group of transformations induces a vector field on M, the
question now arises whether every vector field on M generates one parameter group. of trans-
formations. This question has been answered in the negative.

Example : Let

X =—e* s L

axl | ax?
on M = RZ, Then,
E‘--x' d_'xl—
e W

Thus ¢~*' =t + A, x*=t+B, where A, B are integrating constant.

Let x'=p', x2=p? fort=0Then, A=e-7', B=p’
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Consequently the integral curve of Xis w(r) = [103 o I_p, At pEJ
[

which is not defined for all values of t in R, Thus, if wir)=d,(p), then, X does not

generate one parameter group of transformations.

Prablem 7 leads us to the following definition :
Let I_ be an open interval (- €, €) and U be a nbd of p of M. Let a mapping
il =xU =M
denoted by
Htp)=9,(p)

be such that
i) U is an open set of M

i) foreach t e/_, ¢ (1, p) > ¢, (p) is a transformation of U onto an openset ¢, (/) of M
and ¢y (p)=p

iii) ift, s, t + s are in 7_ and if ¢,(p) = U

b, {‘t’;(!’}] =y, (P)

Suchafamily {¢,I¢ €/_} of mappings is called a local one parameter group of transforma-

tions, definedon [_x /.

We are now going to establish the following theorem

Theorem 1 : Let X be a vector field on a manifold M. Then, X generates a local one-
parameter group of transformations in a neighbourhood of a point of M,

Proof : Let (x',x%,....x") be a local coordinate system in a neighbourhood U of p of M
such that ¢(p)=(0,...0)0 eR", where (U, ) is the chart at p of M. Then
A py=(' =i p)=0, i=1, ...n

Let -

X =3 kixl ....,x"}i
i



be a given vector field on U, the neighbourhood of p & M, where each £l s the components

of X, are differentiable functioins on U of M. Then, for every X on M, we have a ¢ -related

vector field on, §(U)=TU;CR" with ¢ (p)=(0,...,0) e U,CR".

Let n-s be the components of the ¢ -related vector field on Uy of R". Then by the exist-
ence theorem of ordinary differential equations, foreach § (p) e Uy ©RY, there existsa &, >0

and a neighbourhood V of ¢ (p), V; = U, such that, for each g =(g',...q") eV g=a(r),

say, there exists n-tuple of C functions FHLg) f(tq) definedonls < g and mapping

L lg, >V, € Up,i=L.,n which satisfies the system of first order dilferential equations

i
X % =n/(t.6(p), i=1...n
with the initial condition

2) fi0,q)=4¢'

Let us write

3) 8,0g) = (£ (t.@) . F " (1,9))

We arc going to show
0, L.T{Q} = El {B;{qn

Nole that if t, s, t +sareinls andif 8, (q) € V, € U, then each Fir+s,q), f*(t,ﬂ,(q}}

are defined on Iz x U;. Now let us set
(81 (1)seers 8" (1)) = (£ 101 + 8,005 f (4 5.)
For simplicity, we wrile
(gi)=(f'+5.9)
Then each gi(t) is defined on Iz % U, and henece satisfies 1) with the initial condition

4 (g'e))=(f'(%4q))
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Also, let us set

* For simplicity, we write
(B () =(F"(2,0,(q))
then each A'(r) is defined on I , % U, and hence satisfies 1) with the initial condition
(At (@) =(f(0.0,(q)))
=(0.()" by2)
=([(5,q)) by?3)
=(g'(0)) by4)

Hence from the uniqueness we must have

(') =(n'(n)

Using 3) we must have
HH—: [q} = Hf {Hr{qj}'
Thus, we claim that, for every vector field defined in a neighbourhood U, of ¢ (p) of R, .

there exists { b 1t el } as its local 1-parameter group of transformations defined on L5, >U;.

Let us set
V=¢' (V) cU

and define
Wil x¥V oy (VcM

as follows
v (r)=47'(6,9))

Then

i} w(t,ry—y, (r) is a transformation of V onto w, (V) of M
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iy ift, s, t+sarein L and if y (r) < V, then

w, (v, () =47 (8¢, 4w, (1))
=~1(8(t + 5.q)) , after a few steps
=y ru'[rj'

Thus for the given vector field X, defined in a neighbourhood U of p of M, there exists

[w,lt el } asits local 1-parameter group of transformations, defined onT_x V < U of M.
Note that if we define
v =y, =¢"(ba)) a=0()
~ (o), say,
then &~*(a(r)) is the integral curve of X.-
This completes the proof.
Theorem 2 : Let ¢ be a transformation of M. If a vector field X generates ¢, as its local
| -parameter group of transformations, then, the vector field ¢, X will generate ¢, ™" as its
local 1-parameter group of transformations.
Proof : Lell to the reader. _
Exercise : 4. Show that a vector field X on M is invariant undera transformation & onM
if and only if
hod, =¢,° b

where ¢, is the local 1-parameter group of transformations induced by X.

We now give a geometrical inlerpretation of [X, Y1, for every vector field X, Y on M.
Theorme 3 ; If X generates ¢, as its local 1-parameter group of transformations, then, for

every vector field Y on M,

(.11, =, Ly, —(@0)-), } where q=¢,(p) and (¥, =((@0X)(P)
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To prove the theorem, we require some lemmas which are stated below :

Lemma 1 : IT w (t, p) is a function on I, %M, where I is an open interval (— £ €) such
that '

v(0,p)=0, ypeM
then, there exists a function h (t, p) on I . % M such that

tht,p)= w(ip)
Moreover

h {0, p) = w'(0, p), Where ' =%.
Proof : It is sufficient to define

d(ts)

1
Wt p) =] w'tis, p)=7
0

Hence by the fundamental theorem of calculus

|
0

hmm=Ewmwﬂ

S th(t, p) =w(t, p)

Also from above

1
ho,p)=[w'(e.p)ds  =vy'(o, p)[s]h = y'(o, p)
0

Lemma 2 : If [ is a function on M and X is a vector field on M which induces a local
1-parameter group of transformations ¢, then there exists a function g, defined on [ VLV
being the neighbourhood of p of M, where

g (p)=g(t,p)
such that

Flb (p))= F(p)+1g,(p)
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Maorcover,

Xpf = glo.p)=golp)
Symbolically,

Xf = gp on M.

Proof : Let us sct
Fet.py=1(6,(0) = f(do(p), WpeM

Then F(t,p) is a function on 1 _x M such that

Flo.p)= flbo(p))— fbolp))=0, VpeM

Hence by Lemma 1, there exists a function, say, g(t, p)on I, XV, V<M being the
neighbourhood of p of M, such that

1g(t,p)=F(t.p)

- L)~ F(o(p)

4

gt,p

or,  glo.p)="T, % {7 (0o} = £ (@olm)) = X, f
As,

tg(t, )= (b (p)) = F (p)
we find that

fet, =1 +1g,
Proof of the ni:ain theorem :

Let us write
b (p)=yg
p=0;"(g)=b_(q)
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MNow,
{(@)e¥)f Ha) = {Y(f 24 )}(p) = {¥(f +15,)}(p) by Lemma 2

or (X))~ () ¥))g) = (¥ )@) - (YF ) ) — (¥, Wb (a)

lim | i ¥ = {H i
2 [I fﬂ?[rﬂ' —{fﬂlr}*ﬂq}]f =rh—im[1{ 1o [ X =r|l;nf}{Y3r]f¢—:{‘?]}

= ) L@ - )P} - (Yo )a)
= O HO Y@ ~ ()P}~ v, CXF), by Lemmima 2

From the deflinition we [ind that,

Xof =00 1 (4@) - £ @)}

lim 1
or  =X,f=, Jo7if®)-rw@}
Taking f =¥f, we find from above after a few steps

X, 0F) = 00 O Mgy = )}

Thus we write,

[, h_r}“n,l{rq = (% }*?}q}]f = X () =Y, (XF) ={{X.Y1f Ha), after a few steps.

(x.13, =, "0 Ly, — (@), )

Note : We abbreviate the shove result as

(x.v)= "M Ly — (o)}

Corollary : 1. Show that

(60X, ¥1= 1000 210,07 (8,004 1))
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Proof : From the last theorem

. (q}r}_[}r,}f]zr]_i_f;'lﬂ} {{q;x}‘]f—{:b#}g{tj},}*l'}, as (). is alinear mapping

IT{}% {{'113]*}'_{{% 3 ¢fj‘}r}} y from aknown result

Using the definition of local 1-parameter group of transformations, the result follows immedi-
ately. i

Corollary 2 : Show thal

(b ) [X.Y]=

d{{¢|r};}’]
dt e

Proof : Left to the reader

Corollary 3 : Let X, Y generate ¢, and wy, respectively, as its local I-parameter group of
transformations. Then

oy, =wy,° 4,
“if and only if [X, Y1.
Proof:  Let
y oM, =W, o0
Then from Exercise 4, the vector ficld Y is invariant under ¢, . Hence by g 1.8
(9 st =¥

Consequently from Theorem 3, [X, Y] =0

Converse result follows from corollary 2.

A veetor field X on a manifold M is said to be complete if it induces a one paraim-=
eter group of transformations on M.

Theorem 4 : Every veetor field on a compact manifold M 15 complete.

Proof : Let X be a given vector field on M, Then by Theorem [, X induces (¢,) asits
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local 1-parameter group of transformations in a neighbourhood U of pofMand rel_ c R. Ir
p runs over M, then for each p, we get a neighbourhood Ulp) and T _(p), where all such L{(p)
from an open coverings of M. Since M is compacl, every open covering [U(p)] of M has g

finite subcovering (U(p,) : i=1,...,n) say. If we lel
e=min{e(p ), e(p,), ... e(p,)}
then, there is a t such that for |7|< e
P (p)i—ge xM 5 M

is local 1-parameter group of transformations on M, We are left to prove that ¢,(p) is defined
on R X M.

Casen): t=2¢

We write
t=k-S4r Al k being integer
2 2
Then tf:r:tbkg”
z
=¢,.°0,

b b o b -,
2

2 2

k times

Similarly for ¢ <~ e, we can show that

Thus ¢, is a local 1-parameter group of transformations on M.

Combining all the cases, we claim that ¢, is defined on R x M. Hence X induces $, asits

I-parameler group of transformations on a compact manifold M. Thus X is a complete vector
field.
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g 1.10 Cotangent Space :

Mote that 3 (M) is a vector space over the field of real numbers, A mapping
®: % (M) — F(M)
that satisfies
® (X+Y) = (X)+ o (Y)
w(bX)=bw(X), b € Rand forall X, ¥ & X(M),
is a linear mapping over R.

The linear mapping

w: (M) — F(M)
denoted by

!X o o(X)
is called a 1-form on M.

Let
Dy(M)={a, p,..| @:7(M) = F(M)}
be the set of all 1-forms on M. Let us define

(@4 p) (X)=o(X)+p(X)
g {(bm](X} ~ba(X)

It can be shown that D, (M) is a vector space over R, called the dual of (M),
For every p eM, o(X) e F(M) is a mapping

m[:X:]: M — R defined by

102) [o(X)}(p)=w,(x,)
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so that

w,:T,(M)->R
Thus ®, € dual of T,(M). We write the dual of T,(M) by T,(M) and is the gotangent
space of T,(M) . Elements of T (M) are called the covectors at p of M or linear functionals on
T,(M).
For every f € F(M), we denole the total differential of f by df and is defined as
103) (df),(X,)=(XYp)=X,1, ¥p

We also write it as
10.4) (df) (X) = X[

Exercises : 1. Show that for every f e F(M), df is a 1-form on M.

2.1t (x'.xz. iy J;") are coordinate functions defined in a neighbourhood U of p e M,
show that each dxf i=1,....,n i5al-formon U = M,

Solution : 2 Note that
(dx') (X +Y)=(X +Y)d, (10.4) above
= X! 1 Yol
= (dx')(X)+ (@ )(r), by (104)
Similarly it can be shown that
(ax J(BX ) = b{dx?)( X )
Thus each dx’,i=1,,..,n isa |-formon R.

From Exercise 2 above, it is evident that each (dx') p €T (M) fori=l, ..., n We

‘now define
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¥ a :
UL, (dx'}ﬂ(ﬁx_’)p =y
Let @, ET:(M) be such that

5 | :
10.6) mn[ﬁ] =(.i‘,-)# where each (f_f}p €R
il

If possible, let 1, €7, (M) be such that

“,,[?ﬁ—l]ﬂ ={(7), sty 4o (£, (EET] ~(f}), by (105)

Proceeding in this manner we will find that
=g NP S faeat
up[axl ]F =(fi),= m,,(ax,) by (10.6)

Asg { -a%v::' = } are linearly independent, we must have
Hy=00,.

Thus any w, T, (M) can be expressed uniquely as

10.7) o, =2(f),dx),

5T (M) = span { (dx'),,, .., (de"), }
Finally if

2.(f;) p(dx’), =0, then,
i
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) ()

ie. (f;), =0. by (10.5)

Similarly it can be shown that

Thus the set ( fl},, = e shl fn}ﬂ =( is linearly independent and we state

Theorem 1 : If [_x",....x") are local coordinate system in a neighbourhood U of p of M,
then the linear functionals {(dx") b= t,:...,n} on Tp{M] form a basis of T, (M).
Note that
(dX1)(X) =Xx' by 10.4)
= Y62 xi by 52)0f g 1.5
dxd

10.8) (dx!)(X) =&

Thus, one can find

(df ) X) = Xf = 2 & %f = Zg-‘rdx‘l[}{} from above

Hence we write
& i
2 df = ——dx
10.9) +3 o
Forevery o e Dy (M), we define fw tobea | form in M and write

10.10)  (fo)(X)=f(o(X))
Note : Dy(M) is a F(M)-module

48



§. L11 r-form, Exterior Product :

An r-form is a skew-symmetric mapping
My MY—= FIM)

such that
i) wis R-linear

ii) if o is a permutation of 1,2......r with

A T 1) = (o(1), o(2), ... a(r)) then
11.1) ﬁ}{x], le.,..".X,}r-r-]—IZ(sgnn] WX gy Xgzys o Xsin) where (sgno) is + 1
-
or—1 according as ¢ is even or odd permutation

If @ is ar-formand p is a s-form, then, the exterior product or wedge product of o and

K denoted by @A @ is a (r+s)-form. defined as

112 {mAI—‘J{XI-XZW-"-XHXrH. ...... Xs?]

1
i3 wx{sgn u‘}mtxum,..., Xn{r}} K fxﬂr‘ﬁ.u, ....... Xﬂ[r+3}}
T
where o ranges over the permutation (1, 2,...... t+8), X; ed(MLi=1,2,....; Pl

For convenience, we write

11.3)  fag=Utg f.gel(M)

It can be shown that, if @ is a r-form

11.4) { (f Ao) Xy X, ) = fo(Xy, Xgy 0, X,
(oA X, X,)= folXy, .., X;)

Again, if wand p are 1-forms, then
11.5) (@A X)=2{e(X)R(X) -0 (X)n(X)}
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The exterior product oheys the following properties :
11.6) WAR==—HAD, maw=0
Jorp=floap)=ma fit
forgn=fgoap , oap=(-1)"pAaw, @ :r-form p :s-form
(O+play=oAy+pnay

Exercises : 1. If w is a |-form and p is a 2-form, show that

{mnp}{X.,Xz,Xg}:% {mixﬂj-lixz=xﬂ-*'-mlfxz]ll-'-(XmX])+fﬁ{xﬂl-lfx1-«’fg}}
2. Compule

i) (2du! +du®) A (dut — du)

1) (6du' Adu? +27du' A du) A(du + du? +du®)
Solution : 2 1) (2du' +du?) A (du' —du?)

=2du' A (du' —du?) +du? A (du' - du®)

=-2du' Adu® +du* ndu' as dui Adu’ =0

=—3du' ndu® by 11.6)

Theorem 1 : In terms of a local coordinate system (x',x2,..., x") in a neighbourhood U

of p of M, an r-form @ can be expressed uniquely as

ILT) o= 3 f, . dxh adeh, ade where f, . are differentiable functions

on M.
Proof ; Let D (M) denote the sel of all diff-e.rantinble t-forms on M, In terms of a local co-

ordinate system (x',x? .. x") in a neighbourhood U of p of M, the set

| dxioaonde i 124 <iy <..<i <0 } form a basis of D (M). Using 11.2) we find

i) (elxh A dxe) {x.,xg....,x,}=ﬁ 2. (sgna) dxi( Xgy) .. dx’f[k'ucr:)

iy <ig <=,
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where o ranges over the permutation (1, 2, ..., r} and each X; ey (M.

Let
i X= Z*‘ék axh

where £ 's are functions, called the components of X,.

Using ii), we get from i)

(@ ) %) = o) b (Zby 55} ek 57

b<iy <..=i
Using (10.5) of g 1.10, we get from above

i) (dxt A Adx) (XX, X)) =0 Yolsmno) Bl ikl <2l
LB ;
Using ii) in (11.1) of § 1.11, , we find

L] (Xl, X:l_...,,xr} Zﬁ Z{Sg[l G’} oy [Zﬁi‘h} %, Ri ZEU[!] i_ﬂ)

As each w is R-linear, we find from above

a o
-—E(sgnn] E ﬁum ﬁﬁ{r}m(mjm a;a)

Changing the dummy indices j, — i, ..., j, —+ i, We get
a a
E{agncs} 2. ﬁum am "’(m*""gb‘:—n)
Iy ey

Using iii) we find from above

= iz' {u‘.x"rA...ndx*’r](X1.X2.,..X,}f;h"i* . Where
|—|r
i.-\:r';<..-{f;

(i)
w (aﬂrlj L axli ) -ﬁ]h
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Thus
(X, X500 X,) = Z - .ff,i:---f: {d_x'"; Py E.Ill_'tir} (Xl s W X! .
by

f<iy <=,

Hence we can write

@= D fig.odxoades A Ade

fly= =i,
This completes the proof.

Exercises : 3, Show that a set of 1-forms {@,@,,...,0,] i$ linearly dependent if and

»

only if
Wy AW, AcAm =0
4. Let { @,0,,...,0,] be k-independent 1-forms on M, If p; be k |-forms satisfying
2o A =0
i
show that
p=2A; ; with A; =4,
Solution : 3. Let the given set of 1-forms be linearly dependent. Hence any one of them,
say, o, _, can be expressed as a lincar combination of the rest i.e.
Wy =bjoy +bywy +--+ by_yo, , +bw,, where each §' e R
Wy A, A A | A
=@ A@g A A +hmg + b B 0y 5 Fho ) Amg
=h@y A, A AD AWk kB Ay A ADY Ay
=0 by 11.6) of this article.
Converse follows easily,

4, As (@, ..., w,]} is aindependent set of of 1-forms, we complete the basis of D; (M)

by taking 1-forms w,,, ..., w,. Thus the basis of Dy (M)is given by [, ...;@ 0, ..., @, ]

Consequently any 1-from p, i=1,...k can be expressed as
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k H -
i) Hi :Z’qimmm"" zBr'pw.u* e I

ni=1 p=k+l

Given that

2 A =0
f

e, o A@ +Hy Ay ++p, Am, =0

Using 1) and 11.6) one gets after a few steps

2 (A -4 oino; Y Byo am =0
= f=k as;i;
i

As @ s are given to be linearly independent, so we must have
A, —A; =0 and B, =0
i.&. Al;ll- = .r‘l.r-‘

Consequently i) reduces to

M =2 A0, with A, =4,

§. L.12, Exterior Differentiation :

The exterior derivative, denoted by d on D is defined as follows :
i} d EDT} e 'Dr+l

i) for [ e Dy, df is the wtal dilferential
i) if weD,, peDb, then
d{m s p)=donp+(=1)"oady
iv) d=0
From 11.7) of § 1,11 we find that

12.1) do= 3 dfy; AddTAAdeh

n<ip iy
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Exercises : 1. Find the exterior ;:Tiff'ert:ntiui of
) alydy—xlds
i) cos(ay?)dxadz
i)  xdysde+ydzande+zdendy

2. Find the exterior differential of

do s p—madp

A form @ is said to be cloged if
12.2} din=10

If w isar—form and
123dp=m
for some (r—1) form p then, o is said to be an exact form,
Exercise : 3. Test whether o is closed or not where

) m=xydx+(-;~x1—y)dy

i)  ©=e*cosydr+e”sinydy

Theorem 1 : If w is a 1-form, then

do(X|, X,) = %{Xlﬁm{le'}—xz(mfxi}]“mf[xj-xﬂ} .
Proof : Without any loss of generality, one may take an 1-form as
o= de,f,g € F(M)
da( Xy, X} =(df adg)(Xy. X;)
Using 11.5) of g 1.11, we find

do (X1, Xa) = 1) (X1) de (X2) = (dF ) (%) (de) (X))}
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Using (10.4) of g 1.10, we et

do(X;, X2) =5 {(X N Xap) (X2 K18}

=%{Xl{ﬂngl—f'{Xw:ng}}—Xz[.f{X13}+f{XzEX1H}H on
using (4.6) of § 1.4
Now w(X,) = (fig)(X}) = f(dg(X1), a8 (fo)(X)=F(w(X)
=f(Xg) by (10.4) of g 1.10
by w(X)=f(Xa8)

Thus we get rom above

dw(Xy, X;) =%[X.{m(X3]— Xa(@(X)) = F{X1(X22)— X2 (X2)]]
=%{Xl{‘5°(xz}— Xa(@(X,) - f([X1. X2 18)}

do(X, Xz) =+ { Xi(0(Xy)- Xy(o(X ) -0 X, X)) }

This completes the proof.
Existence and Uniqueness of Exterior Differentiation :

Without any loss of generality we may take an r-form as
w0 =f'r.|,-:m‘ra:x"l Aoannditr, fi . eF(M)

Let us define an R-linear map

d:D—+ Das
12.4) do=dfy; ; dxh A..Adxh
Clearly 1)d(D)c D, and
ii) if @ is a O-form, then dw is the total differential of m .

iii) Let it € D, and it is enough to consider '
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W=g, ;. dehaoadel | £ .5 € F(M)
then d(w A 1) =dffj-1,2 B g X A A dxh A —’\...Ad.rj‘)
Using 12,1 we get

d(wAp)=d(f,

]

(84, @i, i, * Fii 48,1 ) AdXT Avndich A diedi A adds

= g i dfi, i Adxic Adch pondih 4 Fiy i, dgj g oA A oadele adh LA did

Adxd w dvis
Sdoap+(=l)aad

iv) Again using (10.9) of § 1.10in (12.4) we see that

day = -iir"i Adxinm, . ndyle

i drhe

B | e S .
ord d{dm) = ———dxh Adx adxlia elx's
(dw) %? R Ayl adxta, L ady

=0,
If i, =i,  then, guie o gois =0
Thus existence of such d is established,

Tt is easy to establish the uniqueness of d.
Thus there exist a unique exterior differentiation on D.

. 1.13 Pull-back Differential Form :

Let M be an n-dimensional and N be an m-dimensional manifold and

M=o N
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be a differentiable mapping. Let TF{M’_J be the tangent space at p of M where T° rip(N) is its

dual. Let Ty¢py(N) be the tangent space at tip) of N where T‘*HPJ{N} is its dual. If (x',...x")
and (y',....y™ are the local corrdinate system at p of M and at f(p) of N respectively, then, it is

Ty (N) . Consequently {dx': i=1,..n} and {dy': j =1, ..., m} arc the basis of T; (M)
and T° “F}(N ) respectively.

Let @ bea 1-formon N, We define an |-form on M, called the pull-back 1 form of ® on M,
denoted by f*w , as follows

13.1) {ft(mm,}}{x,,}={f‘m)p{xr,}:mm,,(_;;{xp},v p of M.

where f,, f*are already defined in § 1.7

So, we write

13.2) [ (@) =(f'®),

then, by 7.4) of § 1.7, we get from 13.1, on using 13.2)

133) (Flo)p(Xp) =0 (5 X) pip, vpof M

Therefore we may write, for a 1 form ¢ on N and a vector field X on M by
13.4) (f*0)X) = (f1X) |

Theorem 1 : If fis a mapping from an n-dimensional manifold M to an m-dimensional

manifold N, where (x'. x%,....x") is the local coordimate system in a neighbourhood of a point p
( ) ! po

of Mand (y'...y™) is the local coordinate system in a neighbourhoad of f(p) of N, then

Proof : Since [ (dy');(, is a co-vector at P on M, it can be expressed as the linear

combination of the basis co-vectors (dx') patP and we take

f‘(dy}.]_ﬂp: = ;a.'}{dxr}p
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Where g/ 's are unknown s to be determined
ar {f*(dyi) ] o 12 =Y ;I{dj_.r') il
¥ .f(pJ aek P_i‘: I Ak I

usinng 10.5 of g 1.10 we find that

. a - - | i
(_f l[dl"r}_r“:})[‘ax_k) =Hfj ) :ﬂj; for {d},"}ﬁ[%} :ai

Ty I

By (13.1). one reduces to

a o
97) 10 {f *(Ec?),;} =%

using Theorem | of @ 1.7 we find

] ’ af_,— a :
2L ot S\ S

|l Iip

Using (14.5) of § (1.10) we find

Thus we get

L] E‘* af"! i
x id?’}f{p}=L(m—k] (@), |, =ty my fl=yiof
lrJ‘

=1
Note : 1. Using (10.9) of § 1.10, one find from above theorem
ISSJ f‘{dﬂ}lﬂp} = {dfj}.l'“‘j = lyis el

we can also write it as

13.6) [ (dy)) ppp =df/ =d(y/).f)
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3 T @ isa 1-form, then, its pull-back 1-form [’ is given by
137 flo= zmjd_ff , where ® are the components of w
i

(Prove it.)

Exercises : 1 If f:M — R’ be such that

flu,v)={ucosv, usinv,av) where
i e .
' =HeOsV, X =HSINV, X =av
then for a given 1-form @, @ =x'dx' —dx” + xldvion RY compate [w.
2.01f f1M — R? be such that
f[u,u} = (acosu Sinv,a Sinu Sinv,a Cosv) then for a given 1-form w

@ =de' +ady® +dx’ on g, determine f@.

3. Let @ bethe I-formin R? - {o,0} by

y X
w=— dx + dy.
22 4 y2 P

Let U be the set in the plance (r,0) given by
U={r>0;0<8 <2n}
and let £: U— R* be the map f(r,8) = x=r Cos®, compute [ “m
{ y=r Sint
Let us now suppose that @ be ar-form on M. In the same manner, as defined earlier, we

define an r-form on M, called the pull-back r-form on M, denoted by f “m , as follows

13.8) (f‘(mf{p}])(txl]ps = {'X"}F) =@ fipy (f“(xl]pi s f*(x;}p). ¥p
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We also write it as
13.9) (f ") Xy ..., X, ) =0(fs Xooo\ fo X.)
Proposition : 1. Let
FiMn— Nm
be a map, @ and p be r-forms on N and g be a O-form on N, Then
) fHlo+p) ="+
B)  fgw)=rf"(2)f"w

Proof : a) As @ and p are r-forms on N, (e + 1) is also so, Hence

(f*':'-’-f"* “}f{p}){xlrxi oy X ) =@+ ) pen (e Xpyonny fo X,)

=0 (e Xrvosos fo X)) 40 (fo Xy s £ X))
5(f'{'ﬂf{::}}J(Xl----~Xr)+(f“{anB[Xh----Xr] by 13.8)

f’{m'l"'l'}f{p}zf‘(m}fr,pll-'-f‘{“}ffp} ' VI{P}

Hence
fla+tp)=fra+

b) Note that if @ is a r-form and g is a o-form, then g0 is again a r-form. Using (13.8)
one gets :

(£ @®) o X1y X, = (80) ppy (fs Xpufo Xguios fo X,)
= (80 1m) (fr Xi fo Xay oo, fo X))
=((g 2 FUPIO pp ) Fe Xy Xpyoos 5 X,)
= (22 /NP pipy (fe Xyyoes fo X,)

=(£@PXSs @ iy ) fo Xy fo X))
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or  (f*(20) ) =T @PNF @) i)
o (f'(g®), =(f"@)AAS (@), . VP
Hence  f'(go)=f"(£)/ (@)
Exercises : 4. Show that
ffloaw)=ronfp
5, Prove that
(feh)yo=h(f"w)
Note ; From Theorem 1 of § 1.11, we see that, any r-form @ can be expressed as

Sl E ity iy dxh a nodah

iy sty <y

where ;;, i are differentiable functions on N. Then

Fin= E f‘(gl.lrg i dxh A..,.-'\.f.ix"r]

i<y <.l
=¥ f" &, ['dxh A..a Fldx" by the Proposition 1(b) and Exercise 4 above

=5 (g!.---lr uf)_f'd.:'l A T dxle

Using 13.5) of § 1,13 we see that

13.10) flo= ¥ (EJ:I._""" a f):{f‘l A A df e

h=iy<.. <i,

Fxercise + 7. Let M be a circle and M' be R? 5o that
fiM— M
be defined by

x' =rcos@, x?=rsinb
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l

If @ = de' +bdx?® and ]J=de1 +§-de, find f*(w A p)

Solution : In this case,

1 1
W =, 0;=b, 1 =M=y

df ! = cosBdr — r sin0 40
df * =sinBdr +r cos0 40
o= a(cost dr— rsind d0) + b(sin @ dr + rcos8 48)

=(a cost + bsinl)) de + (br cos® — ar 5inl) 40

and f'u = ; (cosO dy — rsinB J0) + %{sinﬂ dr + rcosh d8)

=(-l- cosg 4+ 1 sin® |dr +| LecosB—Lsin@ [do
a b b a

Using Exercise 5, one finds that
[f@ap) = fronfp

= {[:a cosB + b Sinb)dr+ (b rcos® —a rsin B} dEl}

n{(lcusﬂ + J—sinﬂ]dr + [r cost — Lsin E]dﬂ}
a B b a

= (a cos + & sin D}(.-Emsi}—isin 'FJ] dr s dB +

b reosO—a rsin B][%mﬂﬂ+%sin EI] 8 A dr

= r(% - %) dr A dl where dB A dr = —dr » d8.

Theorem 2 : For any form @,

d( o) = f*(dw)
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where the symbols have their usual meanings.
Proof : We shall consider the following cases.
i) w 1% a o-form

i) o isar-form

Case i) ; In this cass, lel @ =h, where # is a differentiable [unction
Then {£"dm}(X) =dh(feX)

= (f+X)h by (10.4) of g 1.10

= X(hof) by (73)of § L.7

= d(he f)(X) by (10.4) of § 1.10

= {d(f"W}(X) by (10.4) of § 1.10

or f*ldh)=d(f"h)
The result is true in this case,

Case ii) : In this case, we assume that the result is true for (r—1) form. Without any loss
of generality, we may take an r-form o as

o= g, dx" A oAt

or ['© :f'(gﬁ_ﬂ‘r dx'i A.:.Air'f)

=f'(3r. i, dxh A,..A-:ix‘r]

=18, @xh A o AdxiA ) A (dx)
or d(f'®)=d {f‘(g,wir dxh AL A dxi } A 7 (dxt ]'}
Using (12.1) of g 1.12 we find that

dCf o) =d {f*(g ., 6 Ao ader) A S i)} +
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=) (g, .y, dx AL A dri Dad (£ (dx))
Note that dx’ 1s a 1-form and hence the theorem is true in this case. Thus

d (f*(dx))= f*(d(dx*))=0 by (12 1) of § 1.12

Hence
a1 e (o, 6 et it
= {d(g.-l....-, dxl A .oAdit '}}Af'{dx"r} , 48

the result is true for (r=1) form
=/ {(dgi..y, ndet A adiia )} A poaiy by (12.1) of § 1.12

= _,r"(dgr.l i s adiele cix“r) by known result

Thus di ffa) = F*(do)
and hence the result is true for r-form also,

Combining we claim that
d(f'e) = f"(do)

i.e. d and f commute each other,
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UNIT -2

%. 2.1 Lie group, Left translation, Right translation :
Let G be a differentiable manifold. If G is a group and if the map
(8):82) = 8182
from G x G to G and the map
B
from G to G are both differentiable, then G is called a Lie group.

Exmaple : Let GL(n, R) denote the set of all nonsingular n ¥ n matrices over real num-
bers. GL(n, R) is a group under matrix multiplication. Define

4’(*‘:\}:{““1&;1---- R PR SRR R 'I"‘;a.lll!ﬂn’.!*"”ﬂrrrt}
then

1 GL(n, R) = R"

is a mapping of class C° . Hence GL(n, R} is a Lie group.
Note : Lie groups are the fundamental building blocks for gauge theories,
For every'a € G, a mapping
L:G—=*G
defined by
2.1) L x=ax, Yxel
is called a Left translation on G.
Similarly, a mapping
R:G»G
defined by
2.2) Rx=xa, YxeG

is called a righl tramslation on G.
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MNote that
Lolyx=L,(hx)=abx and L, x=abx
SoLg Lg=Lap
R, Ryx= R, (bx)=xba and Rx=xba
Y Ry =Ry
LyRyx =L, (xb)=axb and R,L x= R, (ax)=axb
L LRy =RL
Thus
23) L Ly=Ly, R,Ry=R,,, LR, = R L,
Apgain ;
Ly L, x = Ly(ax) = bax # abx # L, L,x, Thus
24) LL.# L, L; , unless G is commutative
Taking h=ga-1 in 2.3) we find
LoLi=L. . by23)
=1

(4

Thus

25) Ly =(L,)"!
It is evident that, for every a € G, each L, and R_ are diffeomorphism on G,

Exercise : 1 Show that the set of all left (right) translation on G form a group.

2. Let ¢ : G, — G, be a homeomorphism of a Lie group G, to another Lie group G,
Show that

i) ¢°La:£o¢{u}°¢’
II)I ¢“%=R¢(ﬁ}°¢n "'i"lﬂ,h in G,

4]



3. Let ¢ bea l-1 non-identity map from G to G, If
poly=1L, °d
is satisfied forall g e G, thenthereisah = Gsuchthat =R,

Solution : 2. From the definition of group homeomorphism of a Lie group G; to another
Lie group G,

blab) =H(a)p(b), Va,b inG;
]j [¢ A I“G}X = ¢(‘r-‘ax} = d}(ﬂx} = lb{ﬂ}d}{x} 5 ch{ﬂ} 4‘ (I]I 5= {‘[@{a_] L ‘]})x A S in G‘
foo Ly = Lygy o9
Similarly ii) can be proved.

3, AsGisagroup,e € G (identity). Further ¢ isa 1-1 map from G to G, so fore € G, there
ig'h in G such that

dle)=h
Mote that
p(e) # e, because, ¢ is not an identity map.

Nowforg e G,
E=E€

. d(g) =blge)
=b(Lge)
= (o L,)e)

= {Lg e ¢.}{‘:}1 4as given

= Lg(d(e))

= Lgh
= gh
= Rhg

Loh=Ry Vg
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g. 2.2. Invariant Vector Field :

We have already defined a vector ficld (o be invariant under a transformation in g 1.8
Note that, in a Lie group G, for every a, bin G, each L, R, 1s a transformation on G. Thus we
can define invariant vector field under L , Ry,

A vector field X on a Lie group G is called a left invariant vector field on G if

2.6) (Lp)o X = Xpp VP e G , where (La), is the differential of L.

Thus from g 1.7

((Za)e X))

Lip) Xrp

We write it as
27 (L)X =X

Similarly for a right invariant vector field, write
2.8) (R):X =X

From § 1.7) we know that

((L)eX,)e=X,(goL,)

or  ((L)eX,)  g=X,(gol,)

L.ip

I L,(p)=q then p=(L ) lg=1_ .g=alg
Thus the above relation reduces to
29) (LX) g=X,1,(g0L,)

Let g be the sel of all left invariant vector field on G,
ITX,Y, eg a b e R, then

2.10) (Lp)e(aX +bY) =a(L,)s X +b(L,)s¥ = aX + bY, (L, }+ being linear explained in
Unit 1.

211) (L)X Y= [(L)e X, (L) Y], see g 1.7=[X, Y]
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Thus aX +bY eg and | X,¥]€g. Consequently g isa vector space over R and alsa a Lie-

algebra, The Lie algebra formed by the set of all left invariant vector fields on G is called the
Lie algebra of the Lie group G.

Note that every left invariant vector field is a vector ficld i.e.
g u(G)
where %(G) denotes the set of all vector field on G. The converse is not necessarily true.

The converse will be true if a condition is satisfied by a vector field. The following theorem
states such condition.

Theorem 1 1 A vector field X on a Lie group G is left invariant if and only if for every
[ eF(G)

2.12) (Xf)o Ly =X(f L)

Proof : Let X he a left invariant vector field on a Lie group G. Then forevery f e F(G),
we have from (2.6)

{{Lﬂ]* X:-'}-f =Xp.nf
or X, (fely)=(Xf)l(p) by Q 1.7

or  {X(f = L)} p)=(Xf = L)(p) ,'vpec;
KoLy =X (fely)

Conversely let (2.12) be truc. Reversing the steps one gets the desired resull.

Note : i) The behaviour of a Lie group is determined largely by its behaviour in the
neighbourhood of the identity element e of G. The behaviour can be represented by an alge-
braic structure on the tangent space of e, called the Lie algebrl"-nf the group,

ii)  Note that, two vector spaces U and V are said to be isomorphie, if a mapping
firlli= N
is i) linear and ii) has an inverse [ ! B AR

Theorem 2 : As a vectot space, the Lie subalgebra g of the Lie group G is isormorphic to
the tangent space T (G) at the identity elemente = G.
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Proof :  Letus define a mapping
¢p:g =T, (G) by
1) (X} =X,
Note that, forevery X, Ying, X +¥ e g @nd
GX+V)=(X+V), by i)
=X, +¥
= $(X)+ (1)
Alsofor beR, bX eg and
PoX)=(bX), Dby i)
=bX,
=bX by 1)

Thus & is linear.
We choose X, eT,(G) such that
i) (L;)sV,=X,, , Where ¥, e T, (G).
Then (L)eX s, =(L)e(L,;)-V, from above
=(L;o L)V, fromg 1.7
=(Ly14), V. by (23)
=(L, sV,
=X, ,aschosen
or  ((E)eX); iy = Xpwy BYQLT

or  (L)sX=X

Xeg
We define

pHT(G)>g by
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iy (V) =X
Then (64~1V, = (9~ (Vo)) = $(X) =X, ii), where (L)« isthe identity differential on G.
or (Ve =Ve
Further,  (4=19)X =41 (6(X)) =4~1(X,), by 1)
=¢~1((L,)= V) byii

=¢7'(Ve)
=X by iii)

Thus an inverse mapping exists and we claim that
g=T.(G)
Exercises : 1. If, X, Y are left invariant vector fields, show that [X, Y] is also s0.
R If c,fj (i, j, k=1,2,...,n) are structurc constants on a Lie group G with respect to
the basis { X, X3,..., X} of g show that
i) ef =—ck
iy cff ef, +chocl ekl =0
Solution : 1. From Q 1.7), we see that
{(La}s-lx.i’l}f =[X,YI(f oLy)

= X(¥(f o L) = Y(X(f o L), from the definition of Lie Bracket

= x{((r) ) F}=V{((La)e X)F} by § 1.7

= X(Yf) = ¥Y(Xf) by (2.7)

~[X,Y1f from the definition of Lie Bracket
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o (L) XY =1X, YL VS
Using (2.7), we see that [X, Y] is a left invariant vector field,
2, Using problem | ahove, we see that every [X;, XJ,—] Egas X;eg,i=1, ...n
Since {X;, X5,.., X,,} is a basis of g, every [X;, X ;] =g can be expressed uniquely as,
1) [X;, X ;1=cf X, where cf eR
i) Note that if i = j,[X;, X;]1=0

So, let £ # j. Then from a known result,

[Xi X j1=—1X;. X5
Using 1) we find that

(-'5‘ X*— :—L‘j: Xk

As the set {X|,..., X, } is a basis of g and hence linearly independent, we must have
cf =—ck

i) Using Jacobi Identity, we find that
(03, %0, %, J+[0 X0, ]+ [ %, X0 X ] =0
Hence from 1)
cf [Xg, X1+ ek [Xp X[ T+ek [Xp, X;1=0 as [bX, ¥]=B[X,Y],beR
Again applying 1) , we find that
r:,t} che Xy +ch ok X, +ck ¢y X; =9
Asg {Xl, W] J{n} is a basis and hence linearly independent, we must have

k =
.-:,_{,i ol + (.‘i. ey ek el =0
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. 2.3 Invariant Differential Form :

A differential form @ on a Lie group G is said to be left invariant if

213) L, (@g¢n)=0,. ¥ peC
we wrile il as

2.14) [ o= andcall [ o, the pull-back differential form of .

Similarly, a differential form @ onaLie group G is said to be right invariant if
2.15) Rio=n

A differential form, which is both left and right invariant, is called a biinvariant differential
form.

Exercises : L. IT w, w; arclett invariant differential forms, show that, cach dw,w| A0,

is also so.

% Prove that a differential 1-form @ on a Lie group is left invariant if and only if for
every left invariant vector field X on G, w(X) is a constant function on G.

3, Let ¢ : G — G be such that (a)=a"', Va €G. Show that a form @ is left

invariant if and only if "o is right invariant.

4, Prove that the set of all left invariant forms on G is an algebra over R. Suchasetis
denoted by A, say.

5 If g* denotes the dual space of g, then, prove that
A=gt

where A is the set already defined in Exercise 4 above.

Solution : 1. From Q 1.13, we see that
L, (doy) =d (L; o)
where L o, is the pull-back | form of @,
Using on (2.14) on the right hand side of the above equation, we see that
L, (dwy) =dwm,
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Consequently, dwo is a left invariant differential form.
Tt can be proved easily that w, A w, is a left invariant differential form.

P Let us consider a differential 1-form @ . Then for every a G, L, @ will be

defined as the pull-back differential I-form. Consequently from the definition of pull-back,

(2 0 1,0)(Xp) =01, (L) X,). ¥ peG

Let us consider X to be left invariant. Then on using (2.6) on the right hand side of the
above equation, we gel

D (L onm)X) =om(XLm)

Let us now consider w to be lefl invariant 1-form. Then by (2.13), we get from 1)
mp{xﬂ}=mf-him(xfﬂm]
=mupl:xap]
Taking p=e¢, we sce that

me{.:{z} o ma.e{ xae} =, ( er:r
Consequently, m(X) is a constant function on G.

Conversely, if @(X) iz a constant function on G, then
0, (X ) =g, (Xy,)

Hence 1) reduces Lo
(L; mle,fp‘.l)x.v =w,(Xp)

or Lo =®,  whichis(2.13)

Thus g is aleft invariant differential form.

This completes the proof,
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Theorem 1 : If g is a Lic subalgebra of a Lie group G and g* denotes the set of all left

invariant form on G, then
dm{X,}’}z_%m{[X, Y1) where m eg®, X.V.cg

Note ; Such an equatioin is called Maurer-Carter Equation,

Proof : From theorem 1 of § 1.12, we know that
do(X,Y) = %{X{mm}— Ya(¥)) - X,¥])} forevery vecior field X, ¥

If X, Y arein g then by Exercise 2, o(X), w(¥) are constant functions on G. Hence by
Exercise 2 of § 1.4),
X.a(¥)=0, Y.o(X)=0

Thus the above equation reduces 1o
do(X,¥) =S o((X,Y))

Exercise : 6. Show that

duw! =-—% Ych ol awt =3 ot Aal
ok jik

Solution : If {X;, X,,..., X, } isabasisof gand {w!,..., 0"} is the dual basis of g*, then
1) o (X;)=38
Hence from theorem | above

dol (X 5, X,) == 20l (X}, X, 1)

] i
= —Em’ {Zcﬁ xm] from Exercise 20f Q 2.2

1 : 1 !
=5 o (X,) == %el} 0,
1 ;
== ¢ byl
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Again from g 1.11

i § —l i
i%f”"" (™ A m ’}I{Xj. Xy )= zmz},cm" {mm[xjjmn(‘].{k Y—a™(X, }‘""{Xj}}

=3 et {8781 8¢ 83}

e
=3{eh -}

2%{@_& +t“}a} by i) of Bxercise 1 of § 2.2

=k g
—E'Zf.'}k

=k
= cjk

This dmf(x}_xﬂ:-—-—é e " A0t (X, Xp) Vg, x

1, 8

i do =—% Dochy 0" Aw!

M, n

or Jﬂ)i=—%2"}k w! Ak
Jik

Taked, , k=1,2,3 , then
Sejx 0f Aok =cfy 0l A0 +efy 0! A0 4 ey 0 A0 4l 07 A2
= 4

+eky @3 Aol Hely 0 Aw?
=2cl, 0 Aw?+2¢; 0" Aot +26l; 02 Awd
as ¢t =—cl.

Fk

= E{:;R {l}-‘fﬁwk
J=k
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Thus, we write

dof ==3%, Cfu; @ Amk
jek

Hence

doi =+ cﬂ.k ak Ao,
ok

§. 2.4 Automorphism :
A mapping, denoted by o, forevery a G, 0,: G2 G
defined by
o, (x)=axa!, VxeG
iz said to be an inner automorphism if
i) o,(x)=0,(x)o,(y
ii) o, is injective
ii) @, is sugjective

such o, is written as ada.

Exercise : Show that if G is a Lie group, ki G, then the map
1,:G>G

defined by
L, (k)= hkh-!

8 an automorphism.

An inner automorphism of a Lie group G is defined by
2.16) (ada)(x)=axa™! , ¥xeG
Now, (L,R,i)x=L,(R,-x)=L,(xa™")=axa™! = (ada)(x)

LR, =ada
Using 2.3) we get
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2.17) ada=L,R,_R,:1,
Naote that ada is a diffeomorphism.

Theorem 1 : Every inner automorphism of a Lie group G induces an automorphism of the
Lie algebra g of G.

Proof : Forevery 4 eG let us denote the imner automorphism on G by
i) (ada)(x)=axa™', YxeG

Now forevery G, e G and from § 1.7 such ada ; G — G induces a differential mapping
(), |

(ada)e 1 T,(G) > T, (2 =T.(G)

Such a mapping is a linear mapping and by Theorem 2 of § 2.2, the Lie subalgebra g of a
Lie group G is such that

g=T.(G)

Thus lo show every ada induces an automorphism of the Lie algebra g of G we are to show
it) (ada), is a mapping from g o g
ill) (ada), is a homomorphism i.e.
(ada)s (X +¥)=(ada)s X + (ada)s¥
(ada)(bX ) = blada)s X
(ada)s| X, Y] =[(ada)s X +(ada)s¥] , ¥ X,Y ing
iv) (ada). is injective
v) (ada)s is surjective

1) Let ¥ eG . Then on using 2.17) we get
(ada)e¥ =(Rys o Ly)Y =(Rp2)u(Lu)sY 35 (fog)e=fuogs
= (R )Y
Thus
i) (ada)s =(R,. ),

Again, (Lp)s {{Rﬂ-u ). 1"} = {( L,)s (R,-1), Y} ,forevery peG
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(L, o Ry ),Y
=(ReoLp).Y by 23)
={(Ra1). o(Ls). }¥

= (R (L)Y

=(R).Y asYeg

Consequently, from above, it follows that (R,-1),Y .

Hence (ada). is a mapping from g to g.
iif) From § 1.7) we know that such (ada). is a linear mapping

i.e.
{ada)s (X + ¥)=(ada)s X + (ada)s¥

(uda)u(bX)=b{ada) X, beR
Further, such {ada), satisfics

(ada)s[X,Y]1=|(ada). X, (ada).¥)
Thus (ada), is a homomorphism trom g to g.
) Clearly (ada). is injective, on using vi} and the fact that R, isa translation on G.
V) Forevery a €G, a! eG and we set
(ada=')e X =Y , where ¥ eG
we will show that ¥ e and (ada):¥ = X. Now, for s €@,

(L)WY = (L)elada Yo X = (L)e(Ryo La)e X Dy (2.17)

=(L ) f(R)e (Ly- o} X

=(L)eo(R,)e X
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:{LE 0 Hu}+x :{Rﬂ 'DLI?]‘.X :{R‘]}UX
= (ada 1) X
=¥ as defined.

Thus Yeg
Finally

(ada)s¥ = (L, o R, ),Y by (2.17)
=(L, o R,1),(ada=")e X as defined
=(L; o Ry )[Ry o Lyt ), X by (2.17)
e (L‘r: - Rﬂ‘[ 7 er: La" }: X b}r (1.7)

=(L,)+X by (2.3), where (L,). is the identity differential
=X
'Cnnsequcntly, (ada). is a surjective mapping,
Combining i) — v}, we thus claim
(ada)s:g—+ &
is a Lie algebra automorphism.

This completes the proof,

Note : We also write
(ada)e = Ada |, lorevery acg,
and g-—» Ada

is called the Adjoint representation of G to g.

§. 2.5 One parameter subgroup of a Lie group
Let a mapping
a:R—=>0G

denoted bya £ —* aft)
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be a differentiable curve on G. It forall 5, tin R

a(Bals)=alt+s)
then the family { a(nlreR } is called a one-parameter subgroup of G.

Exercises : 1. Let H ={ a(f)It €R } be a one-parameter subgroup of a Lie group G.
Show that H is a commutative subgroup of G.

2. If X is a left invariant vector field on G, prove that, it is complete
We set

2.18) alt)=a, =4¢,(e)

where { ¢, : €R } is one parameter group of transformations on G, generated by the left
invariant vector field x. ;

Exercises : 3. Let { d, It eR } be a one-parameter group of transformations on G, gener-

atedby X g and ¢,(e) =a(r). M forevery s g,
$yoLy=1L,o0,
show that the set { a(f)If € R } is 4 one-parameter subgroup of G and

¢, =R, holds, forall r &R

4. Let the vector field X be generated by the one parameter group of transformations

{ Ru, lreR ] on G, Show that X is left invariant on G.

Solution : As {d}[ |t ER} is a one-parameter group of transformations on G and

a:f R —»u(1) G is a differentiable mapping, by definition
a(t)-a(s) = Ly (a(s)
=Ly ($,(¢)), as defined in the hypothesis
= ( Liwy® '1’:){3}
= (fp, o Liiny )(E} by the hypothesis

gl



=4u(Latn™)

=¢,(alt)e)

=, (a(n)

=b,(g,(e)) as defined

= (.9, )(e)

=, (&) is {§ (1)} a one-parameter group of transformations on G

= {e) a8 s+f=r+sinR

=alt+ 1)

Thus the set {a(r) |1 R} is a one-parameter subgroup of G.

Again b, (s)=¢,(se) =, (L,(e)) = (§, o L,)e) = Ly(,(e)) = L,(a,) by (2.18)
=sa,

or Pp(s)=R, (5), WseG

e ¢l‘ = Rn

d

4. From Exercise 3 above
Ra, =¢,
Asitis given that [ﬁrﬂr lteR } generates the vector field X, from § 1.9, we can say that Xs

is the tangent vector to the curve K, and we write

X = "0 H (R, 9)- £}

= So7 (L, (g719))~ £ (Ly)a™'9)}
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il

= L (L Re, (a™0) - (7 = L)}

i
=m0 Lr o L)(R, (@7190) = (F o a9}
i) X J=Xgp,(feLy) fromg1.9
We are left to prove that X =g. Note that, for g g.
L,:G—=G
is a left translation on G and (L)« i T,(G) = Ty () (G) =T, (G) is its differential. Hence

((Lg)s X)f = X, (f o L) by § 1.7, where f €F(G)

or (LX), f=Xp(foly)

L(p)
If Ly(p)=s, then p=L'(5)= Ly (s) by (2.5)
p=q's
Consequently, the above equation reduces to
((Lg)eX) f=Xgu(f o L)=Xof  byd)
(()ex) =X, ¥seG

(L,)s =X, which shows that X is lefl invariant.

Theorem 1: If X,Y g, then

(v, x1=," (Adai!)Y -}

Proof: Every X eg induces {¢,Ir eR} as its 1-parameter group of transformations on
G. Hence by §1.9.

(¥, X1=xY1= "7, (o). Y-}
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Now from § 2.4
(ﬁzz‘a,‘[)Y={ada,‘t]‘Y

=(Rg, oLy ), Y by 2.17)

=(Rq, ). {(La), ¥}
=(Rﬂl)_‘f 88 Y eg

= (#,),Y by Exercise 3.

Consequently, the above question reduces to,

rv.X1=, " L(adar)y - v}

9 2.6 Lie Transformation group (Action of a Lie group on a Manifold)

A Lie group G is a Lie transformation group on a manifold M or G is said lo act
differentiably on M if the following conditions are satisfied -

i) Each a eG induces a transformation on M, denoted by
P pa, WpeM
I (o, p): GeM-— pa &M is a differentiable l'l:l.ap.
i) plab)=(pa)p , Ya,beG, peM.
We say that G acts on M on the right.
Similurly, the action of G on the lefl can heldaﬁned.

Exercise : 1, Let G =GL,(R) and M = R and

BGe=M—-M
be a differentiable mapping defined by

H[(H !fjmp]:ﬂp'!'b- a=l), ﬂ'b e
Show thal ¢ is an action on M,
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Solutiom : In this case, G' {1}) e and

i) H[[:]:t ?]-P] 2L
o 8 Dl Dl )

=a'(ap+b)+b', as defined

=a'ap +a'b+b',

= [(“{;‘ “ibr br], p) as defined
g’ By fa b
=D((n u) [n 1]*‘]

Definition : If G acts on M on the right such that

Thus @ is an action on M.

219y  pa=p, YpeM impliesthat a=e

then, G is said to act effectively on M.
Note : There is no transformation, other than the identity one, which leaves every point

fixed.
If G acts on M on the right such thal

2.20) pa=p, ¥peM,impliesthat g =e¢ forsome pe M then, G is said to act freely on
M.

Note : In this case, it has isolated fixed points.

Theorem 1 : If G acts on M, then the mapping
a:g~» (M)
denoted by
o:A—o(A)=A"
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is a Lie Algebra homomorphism

Note : o(A) is called the fundamental vector field on M corresponding to A eg .
Proof: Forevery peG let
g,:G+M
be a mapping such that
i) opla)=pa
Such a mapping is called the fundamental map corresponding to p e M.
We want to show that
oig— y(M)
is a Lie Algebra homomorphism i.e. we are to prove
i) o(X+Y)=a(X)+a(Y)
i) o(bX)=ho{X),beR
iv) of[X, Y]=[cX, o¥]
It is evident from i) that
v) oy(a)=pa=R,(p)
Let A eg. Then from §2.5, A generates {, I+ €R } as ils 1-parameter group of transfor-
mation on G, such that
a(ti=a, =¢,(e)
In this case, such «(r) is the integral curve of A on G. The map

I:D'F}.t T:.{G:I —F Tﬂp{"}{M} ETF{rMJ

is the differential map of o, and is a linear mapping by definition such that
(o,)e X, €T, (M)
Using the hypothesis of the theorem
vi) (@) Ae={o], ( ={o®)}, = A}
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Mote that for every A, B, in g, A + B is in g and hence

{o(A +B)}, =(0,),(A+B), =(9,).(Ac +Bo) =(0,),Ac +(0,).Bes as (95), islinear

={oA)}, +{o®)},

a(A+B)=oc(A)+c(B}, ¥V pehl
Also for b e R bA €gand hence

{obA)}, =(0,).08). =(0,). (W) =b{s, ). A, =bla(A)),

o(hA) =ba(A)
Thus ¢ is a linear mapping

Now A, is the tangent vector to the curve a(f) =g, at a(D)) = e. Consequently by
@ 1.7, the vector field (-:J 5 )* A e Tupl:c) (M)=T, (M) is defined to be the tangent vector to the

curve ©,(a;)=pa, =R, (p) at o,(a,)=0,(e)=p. consequently, by vi), we see that A7

induce R, p as ils one-parameter group of transformations on M.

Again [o(A), 6(B)], =[A", B],

= I]-TD }{ BY, —((RH_ }_B*)P} by Theorem 3 of §1.9

= 1 (o).~ (Ra) B3} v wher
vii)  p=Rg(q)
i) or g=(R, )" p=R,(p)=pa;’
Thus (R,, ), B = (R, ), B} by vii) above
=(R, ).(© put), Be by v)
=(Rg, ©0 4 ),Be Where R, o0, 1G> M
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Hence for b f;G
(R 0 gt ](b) (c jmr..“”)
=R, (pa;r'b) byi)
= pay 'ba, by definition
=0, (a7! ba,) by i)
=0, (ada;' (b)) by 2.16) of § 2.4
= (o, o ada;")(b)

-1 -1
Ry o0t =0y o ada;

Consequently, {Rn, ]_ B; = (Ra, 9 ) B, reduces to

(R )tB‘? {G Dﬂdﬂf_} )t B, = (dﬂ}t(taduri)'ﬂ") =(5F]-({hdarl}*3“) from the
Note of §2.4
Thus we find

[oa),0®)], =, "Fy Ho,)e B ~(o,),((Adar"),B.)}

={ﬂp)”]il;nﬂ}{ﬂ (Ma, }_ ,} is (“p}. is a linear mapping.
=(o,).[A,B], by § 1.9
= (o] A, B]) p by vi)

o[A, Bl =[a(A), o(B)]
Thus the mapping
a:g— (M)

is a Lie Algebra homomorphism.
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Theorem 2 : If G acts effectively on M, then the map
a:g—» (M)

defined by
g:A—>o(A)=A"

isan isomorphism.

Proof ; From Theorem 1, we know that such map o g — (M) is a Lic Algebra homo-
morphism. Hence we are lett to prove that

i) o isinjective and ii) o is surjective,
i} Let A, B =g and o(A)=o(B) Then
o(A~B)= 8, as o is a linear mapping,
or (A-R)"=6
te.  (A—B)* isthenull vectoron M, Now A-B g and it will generate { y (e)1r =R }

as its 1-parameter group of transformations on G such that (A — B), is the tangent vector to the

curve, sdy

b{t)=b =w(e) al blo)=e

Consequently, the vector field (A —B)" = (u’ FL (A =DB), isthe tangent vector to the curve
o, (b(1) = pb, = R, (p) at & ,(b(0)) =0 ,(e) = pe=p.

Thus (A-B)" = (u’ p}.(A - B), generates {R,,J (pilt e R} as its 1-parameter group of trans-

formations on M. But (A — B)" is the null vector on M. Hence the integral curve of (A—B)"
will reduce to a single point of itself, Thus

Ry(p)=p
or pbh=p
As G acts effectively on M, comparing this with 2.19) we get, b =e, ¥V peM.

Again (Lq}‘_(A—B) —A-Bas(A-Bleg
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“ Lyey, =y, oL, from g 1.9
Thus qr,{q}=1|r,(q~f}=wf'[LqI:erJ) =(yeoL,)(e)= (L, oy Je) =L, (b;)

=qb, =q.=q

Hence from § 1.9

(A-B), f =;E§1{]?l{f{¢":{q}}—ffq}} reduces to

A=), r =" f@-f@}=o0.
Thus A-B=0
i.e, A=B.
Hence o(A) =a(A) implies that A = B, Consequently o is injective.

if) As G acts effectively on M, o is surjective,

Thus the map is a Lie Algebra isomorphism and this completes the proof.

Theorem 3 : If G acts freely on M, then, for every non-zero vector field A e g, the vector

field A* on M can never vanish,

Proof : If possible, let A" be a null vector on M. Then, as done in the previous theorem,

every A e g will generate {w (€)1t R} as its 1-parameter group of transformations on G and

we will have

Wi(g)=g
Consequently from the definition, as given in g 1.9 :

Agf =[§%f{¢;(q}ﬂ

i=0

_lim fly (@) f(q)
T+ i

=0.




Hence A becomes a null vector, contradicting the hypothesis. Thus the vector field A" on

M can never vanish.
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UNIT -3

@ 3.1 Linear Connection :

The concept of linear (affine) connection was first defined by Levi-Civita for Riemannian
manifolds, generalising the notion of parallelism for Eucliden Spaces. This definition is given
in the sense of KOSZIUL.,

A linear connection on a manifold M is a mapping
Vg (M) % (M) = (M)

denoted by
Vi(X,Y) > VxY

satisfying the following conditions :

l] vx{Y+2}=va+vxz
) VeynX=VyX+V,X
i) Vo Y=1fVyY

V) Vx(EY)=(XDY+H VY, ¥YXY,Zey(M), [ eEM)

The vector field VY is called the covariant derivative of Y in the direction of X with
respect to the connection

It P is a tensor [ield of type (o, §) we define

v) VyP=XP, if s=0o

&
Vi) (VxB)Yi. Yo s ¥n) =X (B(Yi, Ygy s Yo )= 2P (Yoo, Vi Yivo, Y, )
Exercise 1 : Let M =R" and X, Y, ex(M) be such that

| [peh el 3
¥= Z b FJ' where ?sz(Xh'}%

Show that ¥ determines a linear connection on M.
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Solution : Let X=a";—'. : Z=ci% with @', ¢l eFM), i=1,...,n

X

Then i) V(Y +2Z)= (X{b" +ef }J , as defined

L0,

Bt
- ; 3 e i 8 8
=(Xb + Xc! }ﬁ-{}(h }§+{Xc:=}—x‘.—
=VxY+VxZ

Similarly it can be shown that

Again, VY =[{fX}b']%={F[Xhi])% as (fY)h= f(Yh)

=fVyY and

?ﬂf‘f}:(}([fb"})aff as =[(Xf}b-‘+f{xb"}}% as X(fi)=(Xf)g+ f(Xg)

o i 9 iy 9
(X2t £ (X012
=(XLIY+ [ VxY

Thus v determines a linear connection on M,

Let (x!,x2,..., x") be a system of co-ordinates in a neighbourhood U of p of M.
We define

_a_
x4

k
3.1) = m % where Ek e F(M)

Vv
E
T

k . ; ‘
Such E are called the christoffel symbols or the connection co-efficients or the compo-
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nents of the connection.

Hence if

i

XK=k —
& o'

, Y=n/ EJ where each £ ni e F(M), i=1,...,n we see that

d
VY=V ( / )
X £ g.’ n ﬂxf

=E?a§f ["I"r a_ﬁ-J by iii)
i)
=&l [zl ﬂ.:f "'LJ'E ]h}r iv)and 3.1)

; K
G

k =k : ; : .
Exercise 2 : Let E and E be the connection co-efficients of the linear connection v

with respect to the local coordinate system (x!,...,x") and (y!,..., y") respectively. Show
that in the intersection of the two coordinate neighbourhoods

gk _udfxl By g Ot G B
E ayiayl  axl ﬂ, ayl ayd ax!
Zolution : In the intersection of the two coordinates
9 _oxt 3
vyl oyl axl
i o _ ﬂw o4 2 _ o
- axs gyl vyl axt T axt

Again, from 3.1) we see that

p 0 _w O
E ayk _dyd

axl @
ayf gx! | from above

Fle
%'|m-=:|

94



S L i o o4 il

= = EF AT W e .

ayloyl ax oyl o by iv)
:_a_?xi.,i+£f? n _é?_

ayioyd oxl - gyl %’EET gyl [rom above

Bzl 8 . o ot B
= - B ./ S b
oy oxl T oyl oyl Lk ad O 1Y

P o & ', @

= : - ...+_._[
oviey o "oyl oy ot B 3D

P o 8 o o', 8
a'ey! ax' &t @' &' "ax
Changing s = r
I — s
k=t

_ % ok 8 o axf Ok

T ayiayl axl ayk "oyl dyl ax! ayk from above

(2 ot . o o ay* 91 6

e o T "ol ) o o)y

Since {E % k=1 -u} is i basis of the tangent space and hence linearly independent and
A

the result follows immediately,

3.2 Torsion tensor ficld and curvature lensor field on a linear connection

we define a mapping
T (M) x x(M) = x(M) by

32) T(X,Y)=v -WX-[X,Y]
and another
R (M) xy(M)xy—>x(M)
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3.3) R(X,Y)Z=VyVE-V,VE-VZ

[%.¥]

Then T is a tensor field of type (1,2) and is called the torsion tensor field and R is a tensor
field of type (1, 3), called the curvature tensor field of M.

A linear connection is said to be symmetric if
34) TX, Y)=0

In such case
35) [X¥]=Vf - v}

Exercise : 1. Verify that
i} T(X, Y) =-T(Y, X);

i) T(fX +g¥, Z)= fT(X, Z) + gT(Y,Z);
iti) T(fX, g¥) =/g T(X, Y).
2. If Vi =V} -T(X,Y),show that 7 is a linear connection and T =T

" 3. Show that
iy T(T(X, Y), 2)=T(%, Z)+ T(Z, %¥) - T([X, Y], Z)
i) R(X, X)Y=0;R(X,Y)Z=-R(Y, x}_;; R(X,Y)Z+R(Y,Z)X+R(Z,X)Y =0
i) R(T(X, Y), Z)=R(V.Z)+R(Z,W*)-R([X, Y] Z)
iv) R(X, fY)Z=R(fY, Y)Z=R(X, Y)fZ=1 R(X, Y)Z
Hence Show that
R(fX,gY)hZ=fghR(X,Y)Z

4. Exercise 3 : Prove Ricci Identity

a) for a 1-form w ;
[vxw -y VR -Vix Y])z =-W(R(X, Y)Z)
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by for a 2-form W :

(VxVY ~Vy VY - Vi )2 P) = -W(R(X, Y)Z, P) - W(Z, R(X, Y)P)
5.1f (.1:',---, x“} is a local coordinate system and

8 N awd a eYa .8
= =T R i o =R
aﬂ] U axt [E?x' ayJ]ax* i)

Show that

Tk = F!‘, and r' FE for a symmetric linear connection

i) Rﬁm ﬂxi rjm 5}{3 1m ij h' rim l-'_‘jlt

Solution : 1 1) From the definition

T(Y,X) = VyX = VxY ~[Y,X]
= (VY - VyX ~[X,Y])

=-T(X,Y)

Thus T is skew-symmetric

i) TOX+ Y, Z) = Vix oy Z = V(X + gY) —[FX + gY, Z]

= VyZ+gVyZ~ V2 (IX) -V (eY) - [X, Z] - [gY.Z]

=glY,Z]+(Zg)Y
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=f{"\?xx—"FZX—[X+Z]}+g{?YZu‘FZE’—[Y,Z]}

= IT(X,Z) +gT(Y,2)
Again, using the definition, given in § 3.1 and also from § 1.5 we get

Thus T is a bilinear mapping,

2. Toprovethat i isa linear connection, we have to prove 1), ii), i), iv) of % 3.1. Now
V(Y +2Z)=Vy (Y +Z)-T(X,Y +Z) as defined
=V Y+VxZ-T(X,Y)-T(X,Z)
= ExY+ ﬁxz , 45 defined
similarly, other results can be proved and hence ¥ is a linear connection. Now,
T(X,Y)=VxY+VyX—[X,Y], by definition

=VxY-T(X,Y)-V X+T(Y,X)-[X,Y] , as defined
=T(X,Y)-T(X,Y)-T(X,Y) by Ex 1 (i) above

= -T(X,Y)

T=-T
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3. (iv) From the definition

R(X,IY)Z =VxVeyZ-VyVxZ—Vix rviZ
=Vx (Vv Z) - Vy VxZ~ Vv Z
= (XOWVyZ+ TV Vy Z — [V VR 2~V yyZ— (XT)Vy Z
=£(VxVy —VyZVZ-Vix v)Z)

=[R{X,Y)Z by definition.

5.  From the given condition

(2 )=Ya ()72 2| 2]
k! Ex PRI 5 0% x! dx

Using 3.1) we find

_rk 9 x @
“HigE e
or T*i=[1*'s—rk.]i as defined
& e il e
; d . ! ! :
Since {m tk=1, e, n} is a basis and hence lincarly independent and thus

1) I‘:JE =r;;—r}<1.

If the linear connection is symmetric, then T = 0. consequently, the above equation
reduces to '
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ii) From the definition, we sce that

& BJ i d d d
— | —=V s Vs — -V V. —-=¥ V—
[ﬂx' axl/ pxm A T8 mem MR [i' A ] B

: - dx - — —
Ayl axl axt  axt axl Tyl

a 5} g

K k ! 201
=9 (FJ'" o k] vi[r'"‘ axk] > [aw“axi}
! e

B e a 8 .Y 8 &
_[ﬁrjm] Pw i Y = '(@rim ook T lim orT

Changing the dummy indices t — k,k — ¢ in the 2nd and 4th term we get

d g d g d i} i
k i ke L 1Tk Sk 2 ok
ijm ﬁxk _[axi 1—‘_imj Ox k 1ﬂ,]mI‘lt ﬂxk E:'x-j jm ﬂxk rimrjl 5xk_
. a . : f A ;
Since {g =10 : n} is a basis and hence linearly independent, we pet from above
d 8 rk k K
Rin =§r;“ o7 im + TR =T T

@ 3.2 Covariant Differential of A Tensor Field of type (o, 5)

The covariant differential of a tensor field of type (0, s) is a tensor field of type (0, 5+ 1)
and is defined as

3.6) (VP)(X), Xz, Xan) =( Vi,  P) (X1 X 3000000, Xs)

Exercise : 1 Let 5 be the components of a vector field Y with respecet to a local coordi-
nate system (x!,...,x") ie. Y =3¢ Eii

-5 j be the components of the convariant differential VY, so that Vv X o ¥ ai

ﬂxt
then, show that
o= as—+r‘ 3k
axi
2, Let w beal formand d,l

TF we write



show that

oy,
i ok g T
k. axl h* ki
a4 4 d h d
3 It we write [ ab ] 31 axj Ix™ 1y, axh
Rl = -ZiRb: b RE.Th r s — &
show that S = Ex"' i gm ak \'jra! Ik = J.m.l _;k i mk

Solution : 1. We write

: S 9
20 ('1 o ] o ing =550 7' g

C‘hanging'the -;l_unjlrny indices i — &k, k — i in the 2nd term on the 1. h. § we get

.o B
?_1_'32_ *erkax

ox! ar.

Since {% = .!__....m]» is a basis and hence linearly independent and thus we must

have, "z = é?'—

dx) P
2. As @ isa tensor field of type (0. 1) we have from vi) of £.3.1

[](—}m )l
- o3 -o(ra )

axf-'
d
or, Wy ; g £ (w4) - It oy,
: L0
Thus, @y; = Ef— - 0, Tk
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3, From the definition

AL A
32l

d i d il ¥ a f d it d Kooph 2
= [—* Rw:_]; + Ry T i T Ry = Y. 1"1-; Runr o Vi B 2

= g R e n _d
or Rimxk P _[Eﬂx_“ Rijm 3 +R”'“F1‘ax_"

d J
rk.r Rﬂ.l.lr a}“ r.k.- Rﬂm :_

i

g b BVl i
"FJ;...-RJ: a0 ¢ on changing the dummy indices

h — &, 5 = hinthe 2nd term on the right hand side.

Sinece {E Sh= L.,.,.H} is a basis and hence linearly independent and thus we must

have,

d 1 h !
R:Im = E’]X Rdm + R:fm rﬂc I-]II'I h Rusm rjk R'if: F:m
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UNIT - 4

4.1 Riemannian Metrie, Riemannian Connection :

Let us define a covariant tensor field of order 2 on M i.e. g @ (M) x x(M) — F(M)
Which satisfies

iyg(X, X)=0 : positive definite

i) g(X, X)=0if and only if X =0 : non singular

i g (X, Y)=pglY. X) :symmeiry L X, Y in x(m)

Such g is called a Riemannian metric on M and the differentiable munifold M together
with such g is defined to be a Riemannian Manifold, denoted symbolically by (M, g).

Let {H'. ;Hj, X“}be a co-ordinate system is a ntighbnumund Uolfpe M. We

define
M el )
h ax' ' ax! i

(2 )= ={b1 )
Note If we define 3’ 3 ij ol

d
then the matrix of g relative to the basis {?} is given by

10.....0

Ol:...0
g -

0o....... |

A linear cannéction on a Riemanian manifold (M, g) is suid to be u metric conneciion
if und only if

a1y  Vg=0ie (V.8 (M2)=0, yX, Y, Zinx(M)

The unique metric connection with vanishing torsion is called the Riemannian Connee-
tion or the Levi-Civita Connection. In this case

42) VY-V, X=[XY]
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Theorem 1 : Every Riemannian manifold (M, g} admits a unique Riemannian Connection,

Proof : To prove the existence of such a connection, let us define a mapping
Vi g (M) x 3 (M) — x(M)
denoted by
Vi(X,Y) o VyY
as follows
4.3) 28(VxY\Z) = Xg(Y,Z) + Yg(Z,X) - Zg(X, Y) + g(1X, Y1, 2) + £(X.[Z, Y]) + g(¥,[Z. X])
Clearly, 28(Vx Y +Z), W) - 25(Vx Y, W), 28(V Z, W)
=Xe(Y+Z W) +(Y +Z)p(W. X)~ We(X, Y +2) + g((X, Y+ Z1, W)+ g(X.[W. Y + Z])
+8(Y + Z,[W,X]) - Xg(Z, W) — Y(W,X) + We(X.Z) - g(IX, Y), W) - g(X.IW, Y])
—B(Y,\[W, X1) = Xg(Z, W) - Zg(W, X) + We(X,Z) - g(X, Z], W)
—&(X,IW, Z]) - g(Z,[W. X])
=0
S 2BV (Y4 Z) -V Y-V Z,W)=0, as g 1s linear
Whence
Vx(Y+Z) =V, Y +VyZ
Similarly it can be shown that
Vv Z=VyxZ+VyZ,

Thus such a mapping determines a linear connection on M. Also, from (4.3) it can be
shown that - .
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2Xe(Y,Z)—28(Vy Y, Z) - 2g(Y. Vx2) =0
. or, Vxg(Y.Z)—g(VxY,Z)—g(Y.VxZ)=0 by v)of § i
or, (Vxg)XY.Z) =0, YXY.Z
Thus such a linear connection admits a metric connection. Further, it can be shown that
VY= VyX-[X,Y]=0
Hence such a metric connection admits @ Riemannian connection
To prove the uniqueness, let § be another such connection. Then we must have
Xg(Y,Z) - g(Vx Y. Z) - (Y, VxZ) =0 and VY -V XX, ¥]=0
Xg(Y.Z) - g(VxY,2) -g(Y,VxZ) =0 and VxY - VyX-[X,Y]=0
Subtracting,
B(Vy Y = Vi Y, Z) 4 g(Y.VxZ-VxZ) =0 ¥V X,Y,Z and VxY -Vx¥ =VyX-VyX
where form, we get
VY -VxY=0
VY =ViY
Thus uniquences i3 established, This completes thc.pmnf

Exercise + 1 In terms of a local coordinate system [x!,x2,.--,x" | ina neighbourhood U of p of

a Riemannian Manifold (M, g) show that
i) the components r{ik defined in UNIT 3 is symmetric and

i1) the Riemannian metric is covariantly constant.

9 Let v be a metric connection of a Riemannian manifold (M, g) and ¥ be another
linear connecting given by

Vi Y =VxY +T(X,Y)

where T is the torsion tensor of M. Show that the following condition are equivalent

i) Vg=0 and ii) g(T(X,Y),Z)+g( Y, T(X,Y)) =0

3. Tn terms of a local coordinate system {x',....,x"} the components l"'jk of the Ri-

emannian connection are given by
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' : g, Og
Ein rjllg = l Egm_k_ + gJ:L = ij ]
2\ ox! dx e

Solution : 1. A Riemannian Manifold (M, g) admits a unique Riemannian Connection i.e,
T=0

oV, Y=V, X-[X,Y]=0

[n terms of a local coordinate system {1/, ..., x"], we have
d d

using 3.1},

i
Since {5 k} is o basis and hence linearly independent and thus
%

il
I",-j-‘ = I"J-lf-i.e. symmetric,

By definition, on a Riemannian Manilold (M, g,
(Vxg) (. Z2)=0, v X. Y, Zin (M, g)

I . {alocal o i I n ki x_i Y_iz i.
nterms of alocal co-ordinate system (x', ..., x"}, taking X = Bal VS A T
we find
. )
"f ] ["—.. _] = {}
[ i]i'L] ol Bx*
i (_ﬁ _ﬂ_]_ R [ i T [

O ax! 5 el axk = %E}xll ¥ 5 xd’ E;_:' ox*

using 3.1) we get

] d a]{la a]_[a ,a]
e B — | —. | = r"i e e ] T ]"I e |
Ox! "[axl ax® )T AU R ) T B g, Tk

8] il
x



o, gy, = 0
i.e. Rismannian metric is covariantly constant,
2 Let us assume that i) be true. Then by definition,

Xg (Y,2) - g{vx‘f 2) —g(Y. V4 2Z) =0
Using the condition,

Xe(Y. 2)-g(VxY + T(X, Y), Z) —g(Y. VxZ + T(X, Z)) =0

or (Vxg )(Y, Z) - g(T(X, Y), Z) —g(Y, T(X, 2)) =0
Us'tlng 4.1), one gets
2(T(X, Y), Z) +g(Y, T(X, Z)) =0

Let now the above result be true. Then using the condition

g(VxY - Wiy, z) + gY, Vyz - vxz)

or, 8(VxY. Z) + gY, V52 ) = g(vyY. z} + 8(Y, VyZ)
Using 4.1) on the right hand side we get

g(VxY, Z) + g{"r’. 942 ) = Xg(v, 2)
ur, g(ﬁxY. Z) -+ g(Y, ﬁxz ) =_‘:'_-'7'xg{'f. Z-]
e, (Vxg)(Y. 2) =0V X, V.2

i-ﬂ'H f’g =1

3. Usingiv) weﬁnt:l. Bim = g[a—x]. EF)

P | d
28 Th =2 [r‘ —=, —]
or, “Bim 1 jk = <8 Lyi 3% 9x™

Using 3.1) and 4.3) one gets the desired result ofter a few steps

Theorem 2 : If R is the curyature tensor of the Riemannian Manifold (M, g), then
44} R{X. Y)Z + R(Y, Z)X + R(Z, X)Y = 0: Bianchi's 1st identity

4.5) I:'C"'UR] (X, Y)Z + {'fr"xR} (Y, YZ + {?YR} (U X)Z=0: Blzf_mchi's 2pd identity,
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4.6) g(X,Y)Z,U)=—g(R(X.Y)U,Z)
4.7) g(RXY)Z,U) =—p(R{Z, U)X,Y)
Proof : Using 3.3), 3.5) one gets

RIX.Y)IZ+RIY,ZX +R(Z,X)Y = | X, | Y. Z||+[ Y. [Z.X]]+[Z X, Y]] =0 by Jacohi
identity
4.5) is Left to the reader

Ta prove 4.6), one gets from 4,1)

(VygZ, ) =0,¥X,Z,U
w)Xg(Z,U) = g(VxZ U) +g(Z,VU)
on, Vy (Xp(Z,UN =V {e(VxZ, U} + g(Z,V . 11}
on Y{Xg(ZUD =Ya(VZ,U)+ Yp(Z,VU)
using o) on the right side we get
Y(XE(Z,U) = g(Vy Vi, Z, U) + 2V Z, Vy U) 4 5V y 2.V U) 4 5(Z, Ty Vi U)
Thus, we find
X(Yg(Z, U — Y (Xg(Z,U)) - [X, Y]g(Z,U)

=g (VX VyZ-VyVxZ-VE v U)+ 8(Z TPy U=y Py U -V o))

=p(R{X, Y4, U+ g2, RO YO

Using the definition of [ X, ¥ | f, on the left hand side, one finds
g(R(X,Y)Z,U) + g(Z,R(X, Y)U) =0

Again, R(X,Y)Z+R(Y,Z)X + R(Z.X)Y =0

B(R(X, Y)Z) + g(R(Y,Z)X, U) + 5(R(Z,X)Y,U)=0..... )
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Similarly, we can write
g(R{U,Z)X, )+ p(R(ZX)U, Y) + g(R(X,UZ,Y) =0 ... ¥l
g(R(Y,X)U,2) + g(R(X, UYY,Z) + g(R(U,Y)X,Z) =0 .......5)
g{R(z,UJY.xHgngU.Y)z,xy+g{R{Y.Z)U,>i:}=n ........ E)
Adding o), B), 7). 8), £) and using 4.6) we get
g(R(X, Y)Z.U) + g(R(U, )X, Y) + g(R(Y, X)U, Z) + g(R(Z,U)Y,X) =0
Using Exercise 3(ii) § 3.2 in the second and in the third term of the above equation,
or, g(R(X,Y)ZU) = g(R(Z U)K, Y) - g(R (X, Y)U, 2+ g(R{Z, )Y, X)=0
After a few steps one gels
2e(R(X,Y)Z,U) = 2g(R(Z, U)X, Y)
ie. g(R(X,Y)Z,U)+ g(R(Z, U)X, Y)
Exercise 4. In terms of a local coordinate system (x!,.......x"} in a neighbourhood U of p of
(M, g) show that

i) R +RY, +RE =0

i) R}, o + RO +RE, =0

ijk.amn jmie i

i) Rify e =R 8

iv) REkEhm = _R:;mj,ghj
Solution : i) From ii) of Exercise 5 in § 3.2 and also using the result

FE=I‘£’J‘

the result follows immediately
ii) Left to the reader
ii) using ii) of Exercise 5 in § 3.2, on finds

a i
h =t I st Th
R{jkEhm _(Elx' 1"_-|;c e i + Tl T —ILT lj]

i) LT d
:g(r?kghm) _ij a{'[ﬂllmj = 'é;(r?kghm) rik Eixl Ehim
+T yI3 B TS S
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Using Exercise 3 of § 4.1 we get

1 8 [agmk _I_E}EI-HJ ﬁ'",]k\i aEmh

h e e
RijkBim = 2 axiloaxd  axk ogxm -‘k o

1.2 [ﬁgm. + OBk _ﬁgm) prl B, Loy [?g...;_,rﬂgm _ 8y
2adlaxk o axm k axi 2 axl oot ™

1[- agmt E'“giﬂ__'l":jg'-f.lxt
e T T

Similarly, one can write Rﬂ,nﬂ.hk

Thus, R:}kg!un +R i[}mghk

2 Jk [albhm Ia'ghl agllu) 1 FIIL [aghm " agh] o agmé.\ll

awl .me_axh axl  axm axh

_irl'_l (EE'F_E.F%_EJ,P_I rh [@i_‘_aﬂi_m_%k\l
2 axl o axk axh/ 2 ™ ad gk axb

“ThTingin TR i T Dl +F:m1_';t5u:
.T'husi R:}kghﬂl + R{]‘Imghk = {] or R |J7kghm Rﬂ,,.ghk-

iv) From Exercise iii) above we write

h __Lrn %8mn O i s
Riean ~ Rty =5 o '"Erika': zrgké,{.'.l
+ipn OB 1o, O 1 BB

9 mi axk 3 mi E‘fx“ 2 ml_axj

(agmll ﬂgm agnn]+lrh [agh:i._l_aghk_agjk
z Pk Taxm  axh ) T2 M ok 0 axt

1 1
==z% A imEm + .zr:n:u‘r kBm =0 RiBnm =Ry
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Theorem 3 : If Vand V correspond to the Levi-Civita’' (Riemannian) Conneclion and the
metric connection with non-vanighing torsion T, then

=% 1
4B8) VY-V, Y= ‘2— (TG Y)Y+ T (X, Y)Y, T (Y, X)) where

4.9 g(TZ, X)) =g(T' (X, Y),. Z)
Proof : From 4.1} we ses that

(Vx8) (Y. Z)=0and (V,g)(Y,Z)=0
Thus Xg(Y, Z)=g(Vy Y, Z)+ glY, V4 Z)and
Xe(Y, Z) = g(Vy Y, Z) + g(Y, V, Z)
Subtracling these two, we get
g(U(X, Y), Z) + gY, U(X, 2)) =0 where
a) UK, Y) = VY -V, Y,
U(X, 2) = VyZ - VyZ
Again from 4.2) we pel

(= ﬁx.‘f - ﬁ.,, X —[X, Y] and

T(X, Y) = Ve Y= Vo X=X Y]
Subtracting and using a) above
=T(X, Y) = U(X, Y)- U(Y, X)
or, g(T(X, Y), Z) = g(U(Y, X), 2) - g(U(X, Y), Z)
Agdin, on using 4.9). we find
B(T(X, Y), Z) + (T (X, Y), Z) + g('T’ (Y, X), Z) = g(T(X, Y). )
+8(T(Z. X), Y) + g(T(Z, Y).X)
= g(U(Y, X), Z) = g(U(X, Y), 2) + g(UCX, Z), Y) - g(U(Z, X). Y)
+g(U(Y, Z), X) - g(U(Z, Y), X)
=-2g(U(X, Y), Z) bya)

=—-2g(Vy Y=VUx Y, Z)=2g(V, Y- Vi Y, Z)

= 1 ;
U ?x Y - vx = E {T(X. Y} + T’ {Xr Y}1 T' {Yr K}’
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3.4.2 Riemann Curvature tensor field :
The Riemann Curvature tensor field of 1st kind of M is a tensor field of degree (0, 4),
denoted also by R

Ro:g(M}x (M) = x (M) = (M) — F(M)

and defined by

4.10) R(X,Y,Z,W)=g(R(X,Y)Z,W),X,Y,Z, W in x(M)
Excrcise : 1 Verily that

DR Y, ZW)=—R(Y, X, Z. W)

NRELY,Z, W) =-R(X, Y, W, Z)

M RGL Y, Z, Wi=-R(Z, WX, Y)

VR, Y, Z, W) +R(Y, Z, X, W) + R(Z, X, Y, W) =0

V) (VyRNX, Y, Z,W)+(VZzR)X, Y, W,U) + (VyR)X, Y,U,2) =0

2. Ir RHk and Enm are the components of the curvature tensor and the metric tensor with

respect to a local coordinate system x!,x2,----,x" then the components Rijkm of the Rieman

Curvature tensor are given by

leh:m :Rﬂk Enm

axiaxd axk " axm.
3, A vector field z on (M, g) is called a pradient vector field if
4.11) (7, Y) =df (Y) = YT, f e F(M)
for every vector field Y and M. Show that for such Z
g(VxZ,Y)=g(VyZX) forevery vector ficld X on M.
Solution : From 4.1) we see that
(Vyxe)XY,Z)=0 forall X, Y, Z in (M)
or Xg(Y,Z)—p(Vx Y, L) =g(Y,Vx7)
Using 4.11), one finds
BV ZY)=X(Y/)-g(VxY.Z)
similarly g(VyZ,X)=Y(Xf) - g(VyX,7Z)
5 B(VXZY) — (Vv Z,X) = X(YF) - Y(Xf) +p(Vy X, Z) - g(Vx Y, Z)
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of, g(VxZ,Y) - g(VyZ, X)=[X. Y] f - gV Y -V X, Z)
=[XY]f —elX.¥1.2) by 4.2)
=[X.Y1f —[X.Y]f by 4.11)

=0
Thus

E(VyZ,Y)-g(VyZ,X)
3.4.3 Einstein Manifold :
Let {e;,e5,---e,} be an orthonormal basis of T, (M) Then the Ricci tensor field, de-
noted by S, is the covariant tensor field of degree 2 and is defined by

n
S(Xps Yp) = D R(((e;)  Xe, Yo e)p)
i=1

We write it as

4.12) S(X,Y) = R(e;, X, Y,g)

i=l
Such a tensor field S(X, Y) 1s also called the Ricei Curvature of M.
It there is a constant 3, such that
4.13) S(X,Y) = Ag(X,Y)
then M 15 called on Einstein Manitold.
The function ron M, defined by

r(p)= is ([:“"ijp'{ﬂi }p_)

15 called the sealnr curvatare of M, We wnite it as

4.14) r=2 ()

i=1
Exercise : 1. Show that the Ricei tensor field is symmetric,

Atany peM, we denoted by [1 a plane section i.e., a two dimensional subspace of

T, (M) . The sectional curvature of TT denoted by K( 1) with orthonormal basis X, Y is defined

as
4.15)  K(IT)=g(R(X, Y) Y, X)=R(X, Y, Y, X)
If K( [T ) 15 constant for all plane section and for all points of p M,
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Then (M, g) is called a manifold of constant curvature. For such a manifold
416) RX,Y)Z=k{g(Y,Z)X-g(X,2)Y] where k(IT) say
Example : Euclidean space is of Constant Curvature
Exercise ; 1, Show that a Riemannian manifold of constant curvature is an Emstein Manifold.

2. If M is a I-dimensional Einstein Manifold, then, it is a manifold of constant curvamre

Solution : Let {X;,X,,X;) be an orthonormal basis of T,(M) Then, the sectional curvature

with orthonormal basis X,;,X, denoted by K(TT,) is given by
K(Iya) = R(X), X5, X5, X4)
=R(X2. %, X1, X3)
=K(Il)
Thus, K(IT;)) = K(II}), i+ j
Again from4.12)
3
8(X1. %) = ) R(X;, Xy, X0, %)
i=1
=R(X;, X, X5, X))+ R(Xp, X, X5, X ) + R(X3, X, Xg, X3)
=0+ K(TTy) + K(Ila)
= K(ITj5) + K(TTj3)
S(X,,X5)=K(ll;) + K(II;;) and

S(Xq, Xq) = K(II3) + K(TT5)
As it is a 3-dimensional Einstein manifold, so from 4.13)
S K= XD =A

S(X; Xa) =hg(X, X5) =0
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“Thus, SOX . X )+ 80X, X,) - 8(X,. X)) =2K(T1,,)

or, A =2K([1,,)

A
< Kl ,) = 5 = constant,

i K(i].u.} = Constant, i #
~ Thus every 3 deminsional Einstein muniﬂ.\»ld-is a manifold of constant curvature.
g* 4.4 Semi-symmetric Metric Connection
A linear connection is said to be 4 semi-symmetric connection if
4. AT TELY ) = wiYIX —wi{X)Y, forevery 1-form w.
A lineur connection for which
4.18) Vg=0
is called a semi-symmetric metric connection,

Theorem 1 : If ¥ and % comespand to semi-symmetric connection and Levi-Clvita Connec-
tion respectively, then,

VY — ¥, Y = wiY)X < a(X, Yip
Where p is o vector field given by
glX, p) = w(X) "
Proof ; Since W corvespond Lo u semi-symmetric connection, by 4.17)
T(Z, X) = w(X)Z — w(Z)X
B(T(Z. X), Y) = p(w(X)Z - w(Z)X, Y)
= w(X) g(Z. Y) —w(Z) g(X. Y)
Using Theorem 3 of & 4.1 on the |. h. s. we get
20T (X, Y),Z) = w(X) (Y, Z) - g(Z, p) 8(X. Y)
=g(w (X)Y. Z) — g (Z. g(X, Y) p)
= g(wX)Y —g(X, Y)p, Z)
Whenee 12 (X, Y)=w(X)Y - g(X, Yip
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using the above result in 4.8) we get

= 1
VxY - Vy Y =2ATXY) + o(X)Y - gX, Y)p + o(Y)X —g(Y. X)p)
Again using 4.17), one gets

VY - VyY =a(Y)X —gX, Y)p

Exercise 1. If v and § correspond (o & semi-symmetric connection and the Levi-Civita

connection respectively, then for any 1-form
(Vo) = ("Ti"xm) Y —w(X)o(Y) +a(p)g(X,Y), where
B(X,p) = o(X) :

2. Let ¥ be the Levi-Civita Connection and v be .anuther linear connection such that
VY=V Y -a(X)Y where is a 1-form,

Show that v is a semi-symmetric connection for which Vg = 2a0(X)g
Hints : 1. Note that

(Vyo)Y = Xa(Y)— oV Y)

Use Theorem 1 in the second term on the right hand side, one gets the desired result.
2, MNote that

TX,Y)=Vy Y -V X-[X,Y]
=VxY-a(X)Y -V X+ o(Y)X-[X,Y]
=T(X, Y)+w(Y)X - o(X)Y, onusing the hypothesis
o)X -a(X)Y, as T=0.

Again, (VxENY.2) =Xg(Y,2) - g(Vx Y, 2) —8(Y,Vx,2)
=Xe(Y,Z)-g(Vy Y —0(X)Y,Z) - 2(Y,Vx Z— o(X)Z)
= (Vy2)(Y. 2) + 20(X)g( Y, Z), on using the hypothesis

S Vg =2o(X)g, as ﬁg =0,
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@ 4.5 Weyl Conformal Curvature tensor :

The Weyl conformal curvature lensor, denoted by C, is defined on an n-dimensional
Riemannian manifold (M, g) as follows ;

r C(X, Y)Z =R(X, Y)Z +A(Y, Z)X - A(X, DY + BOY, Z)LX — (X, Z)LY
where A is defined by

1 T
; | i St SO Y Yiohpae—— of X, :
4.19) ALK, Y) 15 { Y+ 2'[11 E U'[” - ‘f?di‘ldLi&tht‘lbﬂr field of
type (1, 1) given by

t g(LX, Y)=A(X, Y), for every vector field X, Y, Z on M

Ann-dimensional (n>3) Riemh:"nninn!.mani.fold '%s said to be conformally flatif
420) C(X,Y)Z=0 '
Goldberg’s Result :

Let (M, g) be a Riemannian manifold and A hf: Ihe field of symmetric endomorphism
corresponding to the Ricei tensor S e

4.21) p(AX, Y) = S{X Y) for every vector fi aldq X, Y on M. Then

42N CX Y)Y E=R{X, Y)E~ m {g(Y, Z)AX - g(X, Z}AY +S(Y, 2N -8(X, Z)Y ]

i (&Y, Z)X — g(X, Z)Y)

= D(n=2)
Proof : Note that
gla(Y, Z2)LX, Y) =glY, Z) g(LX, Y) = g(Y, Z) MX, Y) by 4.19)

1 rp(Y, Z)

= i Y, TSI, Y)Y ——E L p(X y 4.
3 8. D }+2f"—1)(ﬂ-2} 8(X, Y) by4.19).
=-—— (Y, Z)g(AX, Y :
— 5 BY: (e }+2{ “D~B £(X, Y) by 4.21)

e 2) o TR(Y. 2)
{n'—2) 2(n = )(n-12)
Using the above result & 4,19) we find

or g(Y, Z)LX = —

5 s Y, 2) !
C(X, Y)Z= R(X, Y)Z - —— S(Y, Z)X + —=+ = = 5 ;
(X, Y) ( ) = ( ) 2{n—l){n-2}x+ R S(X, Z)Y

e DY Y. ZAX | re(Y. Z)X | (X, 2) Av — 18X Z)Y
2(n - ){n - 2) n-2 2n-Dn-2)  n-2 2(n— 1)(n - 2)
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Or, C(X,Y)Z= R(X.Y}Z—ﬁ{g(‘f, Z)AX - g(X, Z)AY +S(Y, Z)X — S(X, Z)Y)

T

+m|E{Y.Z}X—g{x.z)\(l

Exercise : 1If an n(n >3) - dimensional Einstein Manifold is conformally flat than

2, If we write
a & @ a]
S
Ik} ox' axd axk eyl
~ 8 a)a a
Cw-g[‘:@ﬁbﬁﬁ]
g 0
Ri=S{3r50)
show that
|
Cijia =Ry —E{Ejuﬂu = EiRj + Ry _RikEj]}

(g ~ g
(n—=1)(n—2) jheeil ik &l

Hints : 1 Using 4.13) in 4.14, one gets r=4n
Alsing above result, 4.13), one gets from 4.21)

T
Ax=—x
n

Using 4.20) in 4.22) and also the result deduced above, one gets the desired result after a
few steps.

2 Using goldberg's result, one gets from the hypothesis

& a] | a]
Ciny = Dol e
UK E’[C[ax’ axl) oxk T ax!

the desired result.
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4.5 Conformally Symmetric Ricmanninn Manifold :

A Riemannian manifold (M, g) is said to be conformally symmetric if

4.23) vC=0
Where C is the Weyl Conformal Curvature tensor

Theorem 1 : A conformally symmetric manifold is of constant scalar curvature if

(VzSIY, W) =(VyS)Y,Z) forall Y, 2, W
Proof : From 4.22) we see that

C[X.Y.Z.W}=R{X.Y.Z.W}—ﬁ{g{Y,Z}g{A}{.W}—g{X,Z}g{ﬁY,W}+

+8(Y, Z)g(X, W) = 5{X. Z)a(Y, W)} + {

I
U= | i - A
T B A8CLW) (X, Z)e(Y, W))

Taking co-variant derivative on both sides and using (4,23), we get
. | - i
s AVyRIK YL Z W) = ——{g(Y. Z(VyS)a(X, W) - (X, 2V o S)e(Y, W)
HV uSIY, DX, W) — (V uS)X, Z)a(Y, W)

VUI‘
e 1 o Wi— Z ;
(n—="1)n _2}{3{ I3, W) u(X, Z)e(Y, Wi}

It is known from Exercise 1(v) of & 4.2 that

(VuRNX, Y, Z, W)+ (VRUXY, W, U) + (VyRYX, Y, U,Z) =0

Using the result deduced above, and also the hypothesis one gets
Vyurlg(Y, 2)e(X, W) - g(X, Z)g(Y, W) + Vgr(a(Y, Wig(X, U) - g(X, Wig(Y, )]
+VwrHa(Y, (X, 2) - (X, Ue(Y. Z)} =0

Let {¢;:i=1, ) be an orthonormal basis vectors.
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Taking the sum for [<i<n for X=U=¢;, we get on using the result
Vairgle;, z) =Vt
that
g(Y, )V r—g(Y W)V, r+ ng(Y W)V, r - g(Y, W)V, r+ g(Y, )V, r— ng(Y,Z)V, r=0
or g(Y, L)V, r—e(Y W)V, r=0

Finally taking the sum for 1<i<n for y -7z =g;, We get

Var=0, n=1
Thus the manifold is of constant curvature.
Definition : A linear transformation A is symmetric or skew symmetric according as
4.24) (AKX, Y) =g(X,AY)

or
BlAX,Y) =—g(X,AY)

Exercise : 1, Show that for a symmetric linear transformation A and a skew-symmetric linear
transformation R, the new linear transformation T defined by, T=A R=R. A is skew -

symmetric,

Theorem 2 : For a conformally flat n(n > 3) - dimensional Riemannian manifold, the curvature

tensor R 15 of the form

T

R[X.Y}=-l—fﬁXAY+XAﬁY}—— XY
n—2 (n—1in-2)

where X oY denotes the skew - symmetric endomarphism of the tangent space at
every point defined by

(XAY)Z=pg(Y,Z)X -g(X,2)Y
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Proof : Using the hypothesis, we find that
(AX A Y)Z+(X A AY) = g(Y,Z)AX - g(X, Z)AY +S(Y,Z)X - S(X,Z)Y
As the manifold is conformally flat, we get on using the above result and the hypothesis,

R(X,Y)Z= —l—z-{m}m VZ+ (X AAY)Z) - — (X A Y)Z)
—

(n—1)n-2)

T
(n=1}n—2)

ie. R(X,Y)=- : z—{hxa«‘f+}{r\ﬁ.\’)—
n-

Theorem 3 : If in a conformally flat manifold, for a symmetric linear transformation A,
RX, VA=A R(X,Y)
then

[Az —i]:{ AX =0
n—1
Proof : Note that
RX, V) =—R{Y, X)

As A is symmetric, so by Exercise 1 of this article A, R(X, Y) = R(X, Y). A is skew -
symmetric, Thus R(Z, W)A is a skew symmetric linear transformation and from 4.24) we can
write

g((R(Z, WIA)X, X) = - g(X, (R (Z, W) A) X)
or g(R(Z, WAYX, X) =— g(X, R (Z, W) AX)
=— g(R(Z, W) AX, X), as g is symmelric.

s ER(ZWIAK, X) =0

Using 4.7) one gets

g(R (AX, X)Z, W) =0
Whence RAX, X)2=0
ie, R(AX,X)=0

Again (AX A AX)Z =0 ie, AX A AX =0 for every Z.

Using Theorem 2, one gets

HKaAX

1 T
=~ (AX XAAMX)——
R{X,AX) n—ﬂ{ AAK + X A 3 =12
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AS R(AX, X) =-R(X, AX) and R(AX, X) =0, we get from above,
Xﬁhl}{w%}(nﬁ){:ﬂ
n 1
Mote that X A Y 15 skew - symmetric and thus

AthX——L];'LXAX=ﬂ
n_

. (ﬁz—L]XAXﬂJ
n-—1

Definition : A curve o= x(1),a £t <b is called a geodesic on M with a linear connection v if

4.25) VyX=0

Where X is the vector tangent to the integral curve o at x(t), Note that the integral curves of a
left invariant vector fields are geodesic.

4.7 Biinvariant Riemannian metric on a Lic Broup :

A Riemannian metric g on a Lie group is said to be biinvariant if it is both left and right
invariants,

Exercise 1 : If g is a left invariant convariant tensor field of order 2 on G and X, Y are left
invariant vector fields on G, show that g(X, Y) is a constant function,

Theoxem 1 : If G is a Lie group admitting a biinvariant Riemannian fnetric g, then
4.26) g([X, Y], Z) = g(X, [Y, Z])

4.27) R{J{.Y}Z=-%[[K,YI.ZI

4.28) g(R(X,Y)21W}=—%E{IX.Y].[Z.WJJ

Prool : Since X, Y are left invariant vector fields, X + Y is also so and hence from 4.25)

gKH" =0
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Using 4.25, we find from above

1 VY +VyX=0

since M admits a unique Riemannian connection, we must have
VY - VX —[X,Y]=0

i) or ¥ Y :%[X,Y] from i)

Now for a Riemannian Manifold (Vyg)(X,Z2)=0

or, Ye(X.Z) - g(VyX.Y) -g(X,VyZ) =0
Using Exercise 1 of this article and Exercise 2 of £ 1.4 we see that
Y.og(X.Z)=0

Thus from ii) we lind that —-%g{[Y.XJZ}— %g{XT[Y,Z]] =0
or, g(IX, Y], Z) - g(X,[Y,Z])
Again from the definition
R(X,Y)Z=VVyZ-VyVxZ-VE ¢
=%[K,[Y,Z]]*%[Y.ix.Z]]—]E[D{.Y],Z] by using ii)
I 1 |
uz[x,[Y.Z]]+E[Y,[X1Z} —E[LX,YLZI
=—i[2.[X.Yl]—%[1KsY1-Z] by Jacobi Identity
1 !
1
——E[[X,Y].Z]

Again R(X,Y)Z, W) = —ig[[[X.Y],z], W) by 4.27)

1
=-2e((X.Y1.2], [ZW]) by 4.26)
This completes the proof.
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Theorem 2 : If G is a Lie group admitting a biinvariant Riemannian metric g and [ isa plane
section in T, (M) where IT is determined by orthonormal left invariant vector fields X, Y at pon
G, then the sectional curvature at p is zero if and only if [X, Y] =0.

Proof : From4.15)

K(TT) =g(R(X, Y,)Y, X)

=—%g[D{,Y],[Y,X}} by 4.28)

EIXYLIX. YD)

=

The result follows immediately as g is nonsingular,
Theorem 3 ; If G is a Lie group admitting a biinvariant Riemannian metric g, then
for all left invariant vector lields, X, Y, Z, W, P

Proof : From Jacobi's identity

[W, [P, Z]] + [P, [Z, W]] + [Z, [W, P]] =0
Taking P = [X, Y], we get
W, [[X, Y1, Z] + [[X, Y], [Z, W]] + [Z, [W, [ X, Y]I] =0
or [W, [[X, Y], Z]] - [[X, Y], [W. Z]] = [[W, |X, YII, Z]
=[=1 X, [Y. WII - [Y; [W, X]], Z ] by Jacobi Identity
1) W, [LX, Y1, Z]] - [[X, Y1, [W, Z]] = [[X, [W, Y11, Z] + [[W, X1, Y], Z]
Again from the definition

(VwRI(P.Z.X,Y) = ViwR(P,Z,X,Y) - R(VyP,Z.X,Y) - R(P,V\y Z,X, Y) —
~R(P,Z VyX,Y)-R(P,Z,X,VyY)
=0+R(X, Y, ZVyP) +R(X,Y,VyZP) + R(VyX, Y, Z.P)

+P(X, Vi Y, ZP)
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Using 4.28), one gets

(VyROP.ZX,Y) =~ 6((X,YL[ZIW,P]) 5o (W, 71, PLIX. V)

1 '
-se(ltw. x1Y]iz.p)) vi—g[[x,[w,Y].l?..P]}
Using 4.26) successively we get

=—-%ig([[tX,Y],Zi.W],P}+g({fX,Y_},[W.Z}].P}
+([IW,X1,2],P) + g ([0X.0wW, Y1), P1)}

=+ Lg([wi % ¥),2].p) ([0 YW, 21 P)

_%g({[x?[w,Y]],z],P}—-—égf[[lW.XLY]-Z]-P)

= 0 by 1) for all left invariant vector fields X, Z, Y, W, P.

This completes the proof.
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In the curricular structure introduced by this University for students of Post- Graduate
diploma programme, the opportunity to pursue Post-Graduate Diploma course in any
Subject introduced by this University is equally available to all learners. Instead of
being guided by any presumption about ability level, it would perhaps stand to reason
if receptivity of a learner is judged in the course of the learning process. That would
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Keeping this in view, study materials of the Post-Graduate Diploma level in different
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of new information as well as results of fresh thinking and analysis.
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gratitude to everyone whose tireless efforts went into the writing, editing and devising
of a proper lay-out of the materials. Practically speaking, their role amounts to an
involvement in ‘invisible teaching’. For, whoever makes use of these study materials
would virtually derive the benefit of learning under their collective care without each
being seen by the other.

The more a learner would seriously pursue these study materials, the easier it
will be for him or her to reach out to larger horizons of a subject. Care has also been
taken to make the language lucid and presentation attractive so that they may be rated
as quality self-learning materials. If anything remains still obscure or difficult to
follow, arrangements are there to come to terms with them through the counselling
sessions regularly available at the network of study centres set up by the University.

Needless to add, a great deal of these efforts is still experimental—in fact,
pioneering in certain areas. Naturally, there is every possibility of some lapse or
deficiency here and there. However, these do admit of rectification and further
improvement in due course. On the whole, therefore, these study materials are expected
to evoke wider appreciation the more they receive serious attention of all concerned.
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Unit 1 O Irrotational Motion of an Ideal Fluid

Two-Dimensions

m

Structure

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11

1.19

Introduction

Irrotational Motion in Two Dimensions. The Stream Function
Boundary Conditions

Motion of a Circular Cylinder

Fixed Circular Cylinder in a Uniform Stream

Circulation about a Circular Cylinder

Steaming and Circulation about a Fixed Circular Cylinder
Equation of motion of a Circular Cylinder

Two Coaxial Circular Cylinders

The Milne-Thomson’s Circle Theorem

Theorem of Blasius

Transformations or Mapping

The Schwarz-Christoffel Transformations

Elliptic Coordinates

The Joukowski Transformations

The Aerofoil

The Theorem of Kutta and Joukowski

Motion of an Elliptic Cylinder

Liquid Streaming Past a Fixed Elliptic Cylinder

Rotating Elliptic Cylinder



1.20 Motion of a Liguid in Rotating Elliptic Cylinders
1.21 Flow Past a Plate
1.22 Saolved Examples
1.23 ANloadel Questions

.24 Summary

1.0 Introduction

I this chaper. we consider the rewo-dirnensional irrotational sieady flow of an ideal
incompressible fuid. For plane flow, all dynamic computations for the hydrodynanie
considerntions, we take g fayer of unit height cut by two planes parallel o the plane of the
flow. In considering the plane prohlem. we direct our attention on the kinetic flow around
a hady fixed 1na flow or for the motion of a body in o Nuid arest. We shall restrict our
dizcussions on.cyhndrical bodies having cimeolar and elliptic cross-seclions.,

1.1 Irrotational Motion in Two Dimensions. The Stream
Function

If the motion of a higud remains the same in all planes parallel to that of xy and there
i5 no velocity parallel to the z-axis, ie. if the velocily components u. v are functions of x,
¥ only and the component w = (), then the mation 15 said to be two-dimensional and m such
a case, we consider the circumstances m the xy-plane. When we speak of the flow across
a curve in this plane. we mean the flow is across a unit length of a cylinder whose trace
ot the xy plane 15 the curve in question. the generaors of the evlinder being paralle! to the
axis of z. Here the differential equation of the hnes of low i

vilx — udy =00 ih
while the equation of continuily 15
= S = =
Y e D ey (2]
X Cy £x ' Oy

This equation shows that the left hand side of (1) is an exact differential dyr. say. Thus

ey cy
welx = udy = dy = —dx+—dy
X £y

8



leading to u:_ﬂ \r__?k_". (3
oy O
This function ywix, ¥} i called the stream function or current function. It follows that the
lines of flow are given by w = constant.
Now if the motion of the liquid be imotational, then there exists a velocity potential ¢(x,
v such that

I
= 3 (4
From (3) and (4) we get
o T B TR

fx oy fy  ox (3)
s0 that
o dy O Oy
Bxox Oyoy
which shows that the families of curves ¢ = constant, w = constant cut orthogorally a all
their points of intersection. These conditions are satisfied if we take & + iy to be a function
-0f the complex variable x + iy.

0

Now let ¢ + ty = f{x + iv}). Then

iy F- o dy _ LOh g
c_'!x ﬁ’x =f"{x+iy), --}—+ia}:=|f {x+|}r}=|-§¥—ﬁg-
o Aoy &o_ oy
gving ax ady @y  éx

Thus ¢ and yw are conjugate functions. If w =& + iy = f{z), then w is called the complex
potential.
Noting that
dw _ % oy 0

— =l =—U+IV
dz ox  ox ox . dy )

we have the magnitude of the velocity at any point as : d_dw .y Since
bdz ]
|

;
_‘.‘-:‘:“T’*’] [ J l =(u2 +v2 )3 = velocity. (7
I K é'.

9
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1.2 Boundary Conditions

From (51, it follows that

a2y ;527,4, Aty 8 0
+ = — + =
ax?  dy? adxdy  avix
. o L@ 0f . .
where it is assumed the validity of —— = ——. Thus the stream function v must satisfy
axdy  ayox

the Laplace's equation

Vig = 0 (8)

at all points of the liquid. This function y satisfies the following boundary conditions :

{a)

(b}

(c)

L . é cyr N
If the liquid is at rest at infinity, we must have A + and ooa infinity.
ax cy
At any fixed boundary, the normal velocity must be zero, or the boundary must

coincide with a stream line w = constant.

At the boundary of the moving cylinder. the normal component of the velocity of
the liquid must be equal to the normal component of the velocity of the cylinder.

We now express the condition () by a formula for w as follows,

Let a point O of the cross-section of any cylinder be taken as origin. Let U and V
be the velocities parallel to the axis of x and y at O and let the cylinder turn with the angular
velocity . If P(x, y) be any point on the surface of the cylinder, then the velocity
components of P are U — oy and V + @x. If 8 is the inclination of the tangent at P with
Ox, then from the differential calculus, we have

d
msB:%-E- and sinl_?l:d—i {99

Therefore, the outward normal velocity at P

Also the velocity of the liquid in the outward normal 1s — ™

= (U — wy) sinf — (V + ox) cost

dy dx .
=(U-—wy)——(V-ox)-—. 10
(U my)ds (V-ox)— (10}

g
s

10



On equating above two expressions for the normal component of velocities in
accordance with condition (¢}, we have

dw dy dy
Uy )= —(Voox) SR
g OOy )TV ey

Integrating this equation along the arc, we get

\F:Vx—Ug.f+im[x3+y2 1+ C (1

“

where C 1s an arbitrary constant.

Let the cylinder move along the x-axis with velocity U without rotation (so that V =
0 and @ = 0). Then (11) reduces to

w = -y + C. (12
Similarly. if the cylinder moves along the y-axis with velocity V without rotation. then (11)
aives

w=Vx + C. (13)

1.3 Motion of a Circular Cylinder

Let a circular cylinder of radius a is moving in an infinite mass of liquid at rest at infinity,
with velocity U in the direction of x-axis. To find the velocity potential § that will satisfy
the given boundary conditions, we have the following conditions :

() ¢ satisfies the Laplace’s equation

Vi =0
at every point of the liquid. In polar co-ordinates (r, €) in two dimensions. V¢ = 0 takes
the form

R I 020
— e —
ori ror r?apl

which has solutions of the form

=1} (14}

" cos nth, " sin nf,

where n 1s any integer, positive or negative. Hence the sum of any number of terms of the
form

A r"cos nf), B "sin nf

is also a solution of { 14},

11



(£i) Normal velocity at any point of the cylinder = Velocity of the liquid at that point
in that direction. ie..

i
—:-dszcosﬁ when r= i (15)

or

(1) Since the liquid 1s at rest at infinity, velocity must be zero there. Thus,

i | 8

——=0and —--—=0 at r=90, (16)
r ror

The above considerations suggest that we must assume the following suitable form of ¢.

¢:=_Arcnsﬂ+Emsﬂ. (17
=
From (17
Jﬁ:—[h— %—-]cmﬂ. {]%)
&r r-

so that using (15), we get
UcosB = —( A= £1 Jcmﬂ. valid for all values of 8.
a-

Hence,
-U :{ A- .E. )
-
Again the first condition of (16) gives A = 0. Thus B = Ua’®,
Hence (17} reduces 1o

-

¢:£H—;c05&. [ 19)
r

[t may be noted that (19) also satisfies the second condition given by (16). Hence (19}
gives the required velocity potential. But

fw 160 Ual
—m S e e i)
or raf r-
After integrating. we obtain
42
w:—[—‘T-‘l—-sinﬂ (201
-

12



which gives the stream function of the motion. The complex potential w is given by

L {cosB—isinB )= Ua®

21

P

where z = re'?.

1.4 Fixed Circular Cylinder in a Uniform Stream

Let a circular cylinder be fixed at the origin and x-axis be chosen in the opposite
direction of the stream U. Let R’ be the region r = a. Now the velocity potential ¢ satisfies
the relation

V24=0inR". (22
The boundary conditions are
¢ ~ Ux at infinity,
and
S 0 on the boundary of cylinder.
r
Let us take

&= Urcos 6+ ¢, (23)
where ¢, is the contribution due to pressure of the cylinder. -
The boundary conditions give
iy — O at infinity (24}

and

a¢ |

———=UcosBonC:r=a (25)
or

Now, since § is harmonic, so ¢; is harmonic and its normal derivative is prescribed
on the boundary,

Now let us assume ¢, to be of the form

[ =[;ﬂ'|.r+E JEDSB.
r

13



To satisfy the condition (24), we have A = 0 and from (95), we get B = a°U.

Hence
2
¢ =UrcosB+ Ua cosf & (26)
Again, we have
3o M,
o ran’
which gives
Ta2
w = Ursin H—La -5in@ . (27
r
Hence, the complex potential 15
al
wiz)=Uz+ inR'. (28)
The equation of stream line is
W = constant
or,
42
( r— T J sin 8 = constant
or,
aly ]
¥ —==——5 | = consiant. {29}
\ B Gl
Complex velocity is given by
dw ( a? J
.. -
dz a z2 (30)
Then daw = () implies
Z=a

Therefore z = a are stagnation points (a point where the velocity is zero is called a
stagnation point. The stream lines are not well-defined thereat; a stream line may divide into
two branches at such a point).

14



1.5 Circulation About a Circular Cylinder .

F
1f A and P be any two points in a liguid, then J'(_ udx + vdy + wdz ) is called the flow
A
along the path from A to P, where u, v, w are velocity components. If the velocity potential
¢ exists, 1.e. if the motion be rrotational, then

ax ay oz
and so
4 -
%,
4 ax Of

The flow round a closed curve C is known as circulation which is usually denoted
by I'. Thus

F:-ﬁ(udx+vdy+wdz]_
C

If the motion is irrotational and the velocity potential ¢ is single-valued, then circulation
round C is zero,

[et k be the constant circulation about the cylinder. Then the suitable form of ¢ in two
dimensions (r. 8) may be obtained by equating to k the circulation round a circle of radius
r. Thus, we have

(——‘i?-}fimhh
20

integrating this we get

kb
} i 2n
Again,
oy _ o
ar  1ég’
which gives
k
= =-]
v Znnr



Thus the complex potential due to the circulation about a circular cylinder is Biven by
ik

w=-—{lnr+i)
2n
ar,
ik -
w=—Inz, (since r_:re"u_} (=1 B
2n

1.6 Steaming and Circulation About a Fixed Circular Cylinder

We know thal the complex potential wy due to the circulation of strength k abour the
cylinder 15 given by
Wy = ﬂ"'I—]r\t;e.
S
Also, the complex potential w, for streaming past a fixed circular cylinder of radius a, with
velocity U in the negative direction of x-axis is given by
wa =Uz+ Hﬂ_ﬂ .
o z
Thus, the complex potential w due to the combined effects at any point £ is given by
= W+ W

=U[1+Hh ]-,L,-zk- Inz. (32)

I #

s . . ai Yk
e g+ivw=U[ re® +2g-18 |4+ = [n(reit )
Yhy [ r J 2n '
Equanng real and imaginary pans. we obtain
a= 1]
= = leosB-—-
] U(l+ = JLEIH > x 133)
and

qd
W =U( r- ‘l—r J&inEﬁl‘+§h—Jnr.

Since the velocity will be wangential only at the boundary of the cylinder, so

[ o)

| &r J =0 and hence the magnitude of the velocity q 1s given by

16



.
red

=| 2 Usin®+—5—|.
2ma
If there is no circulation, i.e. if k = 0 there would be points of zero velocity on the
cylinder at 8 = 0 and @ = n. the former being the point at which the incoming stream
divides. However, in the presence of circulation, the stagnation points are given by g =10,
e

: k
sinfl=-——
e 4 nla
and such points exist when
|k|<4nUa. (34)

We now determine the pressure at points of the cylinder. The pressure is given by
Bemoulli’s equation

A =
: Cit)-5q7, (35)

Let T be the pressure at infinity where the velocity is U and so

IT L1
p—C{H 2U.
Then from (35) we obtain

R 5 |

P24 (U2 -q?)

pop 2 f

or,
p=H+--I--pU3 —I-p'IrZUs.inEl-l---k— )3_ (36)
2 2t 2 na

If X, Y be the components of the thrust on the cylinder, we have

N== I:“ pcosBadd,

¥e -I‘:Ipsinﬂadﬂ.

Using (36) we get X =0. Y = pkU, showing that the cylinder experiences an upward i,
This effect may be attnbuted to circulation phenomenon.

17



1.7 Equation of Motion of a Circular Cylinder

Let a circular cyhinder is moving in a liquid at rest at infinity. To calculate the forces
acting on the cylinder owing to the pressure of the fluid, we suppose that U, V are the
components of the velocity of the cylinder when the center of the cross-section O is
{Xa ¥o). Then we have

U=xgand V=y,.
Let 2, = Xg + iyp and z — 2, = re' where r denotes the distance from the axis of the
cylinder.

On the surface of the cylinder r = a, we must have, the velocity of the liquid normal
to the cylinder = normal velocity of the cylinder, i.e.

g
—T¢=Ucosﬂ+V5inﬁmr=a~ (37)
T

Since the liquid is at rest at infinity,

el
_—— =) ; 38)
o a5 [ =¥ oo {
The conditions (37) and (38) suggest that ¢ is to be taken in the form
¢=(Ar+%]cmﬁ+(ﬂr+%]sinﬂ. (39
Therefore
ﬁ =[ A—ijcmﬁ+(lﬂ—£ ]sinﬂ,
ér r r
Using (37) and (38) we get
Us—-A,V=—m-C,A=C=0
al a?
Thus we have B = a’U, D = a*V,
Hence from (39), the expression for ¢ is given by

¢=?ri(Umsﬁ+Vsinﬂ}_ (40)
Noting that
o T
or o0’



and using {40) and then integrating this equation, we obtain
2
ur:ir—{—U:ﬁnﬁ+\"casﬁ‘1. (41)
- Hence the complex potential is given by

2.0
We=d+iy= “—i’—{UHV},

ie.
a2 (U+iV)
we— =T 42
Z=Zp
Now
, 2(U+iV) a2 (U+iV)?
0 Y e AT UV astULNIE (43)
a4 a o z2-2p (z-2g )2
Equating real parts, we obtain
i . 2
gz%{Ucnsﬂ+VsinH)+?—i[{ﬂ?— =V2 )cos20+2UVsin28], (44)
The magnitude of the velocity q is given by
2 . 2 qa(puzave
g2 =|9 )7 o] gz UiV " 84 (U2 +VE) (45)
dz (z-2z4 )2 r4

Omitting the external forces, the pressure at any point is given by Bernoulli’s equation
as

o |

P
—=C{t) ===l
[ (t) £t Zq '

which, on using (44) and (45) gives
p_ al . s B2 povin s : Lad 12 o2
5 =C()+ r--(UﬂﬂsB+VmH]+r—2[{U ~V?2 )cas20+2 UVsin20] -5 = (U2 -V2)
(46)
Let p; be the pressure at a point (a, &) on the boundary of the cylinder. Then p, is
given by (46) on putting r = a as
Py =pC(t)+paf UcosB+ Vsind )+p[ (U2 —V? }mﬁﬂ%—l’.U\"sinEH]—%( U2 +V2),
(47
19



Let X and Y be the components of force on the cylinder due to Muid thrusts, Then,
we have

2x
X =—_[“ ap, cos0do,

Y=— [ "ap, sin0do.
which, with the help of (47), give

X=-pa ["Ucos? 60

=-na?pl
=-M'U,
where M’ = ma’p = the mass of the liquid displaced by the cylinder of unit length,
Simulardy,
Y=-malpV=-M'V.
Corollary :
To show that the effect of the pressure of the liguid is to reduce the extraneons
Jorces in the ranio
{o—p):(o+ pi

where o, p are the densities of the cylinder and liquid respectively, we proceed ws
Sfollows

Let M be the mass of the cylinder per unit length and X', Y’ be the components of
the extraneous force on the cylinder if there were no liquid. Also let f, be the acceleration
of the extrancous force in x-direction. Then, due to presence of liquid, the resultant force
in x-direction is

=na‘of, —malpfl,

o-p

{malof, )



or,

'r__?"'"l__ !J._—P .
MM o
or,
: 2 o
M s e Bl
M- O+-J33-p a]
Theretore
. G-p
MU= —X'
T+
Similarly,
“_
My=2"Py,
o+p

Hence the effect of the pressure of the liquid is to reduce the external force in the ratio
(g —pi:{o+p

1.8 Two Coaxia! Circular Cylinders

We now deternioe the velocity potential and the stream Tunction al any point of &
liguid contained between two coaxial circular cylinders of radii a and b(a < b). Let the
cylinders are moved suddenly parallel to themselves in directions at right angles with
velocities U and V respectively

Then if ¢ be the velocity potential and v the stream function at any point (r, 0) in the
liquid, then the boundary conditions for the velocity potential ¢ urc ;

o
e =1cos ), when r=a
ar

angd

C -
- —=Vsin@ whenr=bh. (48}

£

Now ¢ must satisfy the Lapiace's equation

- =0, (4]



at every point of the liguid,

‘Since (49} has solutions of the form r"cos n@, "sin n@, where n is any positive or
negative integer, the stui o dny number of terms of the form A r® cosnB, B_r" sinnd
is also solution of (49). However. a suitable form of ¢ satisfying the given conditions is

L;’:'-'[Ar+.!ri]cm‘.ﬂ+((:r+%]sinﬁ. (50)

Using the two boundary conditions (48) we obtain for any values @

A - B =UTE——[-}'-—_.H. and A-—"‘E 33.1:-_?_:"?-
al al a? az
These give
Ua? Ualh? Vb2 Vaih?
A= B = = . ——— e
(b2 -al) b?=a2) (bi=-al) (b:—a?)
Thus -
_ Uar [ . b? .. O M e T
#—{b:_a:}[w ‘ ]cuaﬂ g —-aﬂ[“l = ]sml.?u (51)
Since
o
I
we get by using (51)
_ Ua? b2 Y. Vh? al
gl ).

1.9 The Milne-Thomson’s Circle Theorem

Statement : Let fiz) be the complex velocity potential for the two-dimensional
frrotational flow of an incompressible inviscid fluid having no rigid boundaries and
such that there are no singularities of flow within the circle 1 z1 = a. Then, on

22



introducing the solid circular cylinder | z| = a into the flow, the new ¢ aplex

velocity potential is given by w=f{zl+f{a? lz) for lz1 2 a

Proof : Since the singularities of f(z) occcur in the region | 1> a, so the singularities
of f(a’/z) lie in | 2 1 < a. Hence the singularities of fial/z)alsolieinlzl<a Thus fiz)

and f(z) + f (a2 /z) both have the same singularities in the region | z | > 0 and, thercfore,
both functions, considered as complex velocity potentials, may be ascribed to the same
hydrodynamical distributions in the region l z 1 > a

]

Now, on the circle | z | = a, we take z = ae”, so that a’lz = ae™ and, therefore,

w=f(z)+f(a?/z)=f(ae®)+f(ae ®)=f(ac®)+T(ach)

Thus, on the circle | z | = a, w is the sum of a complex quantity and its complex conjugate
and is, therefore, w is a real number, i.e. W = Im(w)=0on | z | = a. Hence, the circular
boundary is a sivream line across which no fluid flows. We, therefore, conclude that 1 2 | =
a is a possible boundary for the new flow for which w = f(z) + (a*!z) is the appropriate
complex velocity potential.

Applications of circle theorem ;

Example 1. Uniform flow post a stationary cylinder

We have aiready seen in Section- 1.4 that a uniform stream having velocity <L along
the negative direction of x-axis gives rise to a complex potential Uz, Thus, if we take

-

f{z)=Uz then f(allz)= Ha_'. Thus on introducing the circular section | z | = a into
z

the stream, the complex potential for the region | z 1 = a is given by

w=[’{z}+f{a3|zh:U[z+£\l_
z J

If z = re®™ and w = ¢ + iy, then
b= L!-:m;{}[r+“—"—). y = Usinﬂ[ FFE:;J
r
which are the results obtained in Section—1.4.

Example 2. Uniform stream at incidence with the positive x-axis
The complex potential for such a stream of veiocity U is Uze™®. Thus, if we take fiz)
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: x 2 : i ;
= Uze ™, then f{ Al ): Ue i@ -aT. Hence, when the cylinder of section |zl =a i
Fa 4

. . ; )
introduced, the complex potential in | 212 a becomes W = Lv{ze-'{‘ +( = )c i }

1.10 Theorem of Blasius

Staternent : Suppose that, in a steady two-dimensional irrotational motion given
by the relation w = fiz), i.e. ¢+ iy =fla + iv), the hvdrodynamical pressures on the
contour of a fixed cylinder are (X, ¥) and a couple N about the origin of coordinates.
Then

and

| dw ’
M = ”*{'gf'i E[:;r] f'-'=} (53)

where p is the densiry and the integrations are taken round any contour surrewnding
the cylinder.

Proof : Let the normal to'the cylinder at the point P{x, y) make an angle U with the
positive direction of x-axis.

Then, for the action on the arc ds and P, we have
dX = — p sin B ds, dY = p cos B ds
i.e. dX = - pdy, dY = pdx
50 that .
X = fpdy.‘f= fpdx.
i c
and, thercfore.

X~iY=~i§pldx—idy).
e
where the integrals are round the contour C' of the cylinder.
Since there is no external force and the fluid is moving irrotationally and steadily. so
the pressure equation is given by
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=]

+* ‘iq * = constant = A.

Thus

X=iY=-i -,,p[A-%ql dex—id}f}

WNow the contour of the cylinder is a stream line, i.c. on O, y = constant. Also
. dw=dw,
Therefore

P fdw Y
xive sl B @

Now in the plane oulside the cylinder, it may be possible to have singulanty in the

5

function [{;—W] if there 15 any physical sinzularity in the fluid (such as a source or a
A

vortex ), Thus, if we take a larger countour C surrounding C" such that there are no
singularitics between Cand C; or more generally. if such singularities exist, then the sum

of the residues nl"( E::IE )h at all poles between C and C' is zero, then the integrals of this

function have the same value Tor all such contours and we have
; I dw ): .
X=i¥=— -— dz.
S ;_I[ az )
Agan
N= fF;--{ pxdx + pydy )
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= Real part of §_,p(x+iy)(dx—idy)

= Real part of }C, pzdz

= Real part of | ~5p¢..2

(&)
= Real part of —%pgﬁc,z(%“]dﬁ]
)]

= Real part of | —

2
= Real part of —I—p C,z[g}i) dz],

Considering the same limitation as before regagding singularities in the liquid, the integral
may be taken round any contour C which surrounds the cylinder.

1.11 Transformations or Mapping

The set of equations
u=ux, y) v=vix,y) (54)
defines, in general, a transformation or mapping which establishes a correspondence
between points in the uv- and xy-planes. The equations (54) are called transformation

equations. If to each point of the uv-plane there corresponds one and only one point of
the xy plane and conversely, we speak of a one-to-one transformation or mapping.

Conformal mapping
Suppose that under the transformation (54), the point (xg, vg) of the xy-plane is
mapped into the poirit (ug, Vo) of the uv-plane while curves C, and C, [intersecting at
(xg, Yo)] are mapped respectively into curves C) and C%. Then, if the transformation is
such that the angle at (xq, ¥g) between C, and C; is equal to the angle at (uy, vp) between
" and C"; both in magnitude and sense, the transformation or mapping is said to be
conformal at (Xg, Yg). A mapping which preserves the magnitudes of angles but not
necessarily the sense is called isogonal.
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1.12 The Schwarz-Christoffel Transformations

Any simple closed polygon with n vertices in the z-plane (z = x + iy) can be
transformed into the real axis in the £ { = £ + in )-plane, the interior points of the polygon
corresponding to points on one side of the real axis n = 0, the transformation-cffective
relation being

oy a3 g
;Eﬂff,—a.ﬁ" (G-a)7® - (G-a,)® (55)
g
ar, z=Aju;~alm'-T"’ {.;haz}Tx" {;—a“)_u""' di +B (56}

where A and B are constanis which may be complex, o, a,, ..., o, are the intenor angles
of the polygon and a,, a,, ..., 4, are the points on the real axis n = 0 that correspond to
the angular points of the polygon in the z-plane.
The following facts should be noted :
1.- Any three points of a;, as, ..., 4, can be chosen at will,
The constants A and B determine the size, orientation and position of the polygon.
It is convenient to choose one point, say a, at nfinity in which case the last factor
of (54) and (55) involving a, is not present.
4. Infinite open polygons can be considered as limiting case of closed polygons.

1.13 Elliptic Coordinates

Let
z=ccosh{ wherez=x+iy,{=E+in.

Then x + iy = ¢ cosh(§ + in) = elcosh £ cos 1 + i sinh £ sin 1}

so that x = ¢ cosh £ cos n y = ¢ sinh £ sin 1. {56)
bvious} x? + ¥ _ 47
¥ ctcosh?f clsinh2f& ©7)
x 2 i
and -—2——'--_-,—-4-—1*. =y {53}
c?cosimn c?sin?y
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Thus & = const. and 1) = const. represent confocal e]l:paea and hyperbolas respectively,
the distance between the focii being 2c.

Let a, b be the semi-axes of the ellipse (57), Then for £ = o,
a=ccosha,b=csinha, c* =4 ~b°

and a+h=ce“.a—h-—cxz'“,u=l]uwa+b

2 “a-b
The parameters £, 1 are called elliptic coordinates.

1.14 The Joukowski Transformations

The transiommation
2=+ oT (59)

is one of the simplest and most important tansformations of two-dimensional motion. By
mieans of this transformation we can map the C-plane on the z-plane, and vice versa. From
(59), it can be shown that when | | is large, we have £ = nearly, so that the distant parts
of the two-planes are unaltered. Thus a uniform stream at infinity in the z-plane will
correspond to & uniform stream of the same strengih und direction in the C-plane.

) . . . |
We now consider the inverse tansformation of (59, viz. £ = 2{ rEJZ? —-g? } or
confining to positive sign only,

f=g{er V=) (60)

(B

It can be readily shown that the region outside the ellipse K; +-—- =1 is mapped into
H &

the region outside the circle £ = L—{a+ b).

Application. Streaming past a fixed elliptic cylinder
Let us consider the stream whose complex potential is Ufe™ in the L-plane. Then,

on inserting the circular cylinder | £ = --]-f a +b ) into the stream, the new complex potential

-}

is given by circle theorem as
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. Ufa+b)?
wy =Ule~# + F{ﬂm; = (61)

1 ; : . ; 1 R
Now by Joukowski’s transformation (60}, the region outside the circle (§|= 2 {a+blis

. . . 1 y? i

mapped on the region outside the ellipse 1; + i}rT = 1. Hence the complex potential w
a? b?

for the flow past a fixed elfiptic cylinder can be obtained from (60) and (61 by eliminating

C as
. b2 eib
w=%-l..l[c-'ﬂ (z+/27 -¢7 }+(a+ i }

I+ E- —CT
Using the transformation z = ¢ cosh £ for elliptic coordinates, we have /z? ~c? =csinhC
and so0 24424 —c? =ceb Thus

a+b)®
we kgl e et + L2100 L
2 ce s

= % U220 (a=blet +(asb)e-cn ]
Hence on the ellipse & = a, whence a + b=ce” and a - b = ce™, we get
w=%U (a+b)[esiPa +eliita ]
i.e w = Ufa+ b) cos h(€ - i} = a). 62)
This is the required complex potential for the streaming past a fixed elliptic cylinder.
In particular, if the stream were parallel to the real axis, so that f§ = 0, then
w = Ufa + b) cos hi& — a). {63)

As a special case, we impart to the whole system a velocity U inclined at an angle p
with the x-axis. Then the stream is reduced to rest and the cylinder moves with velocity
U, so that the complex potential is

Ufa+b)? | Uia+b)? Ufa+b)? i
We=—" " i = P PRl St gl IS
4C 2(2+4fz27 —c¥) ic
= E_{_aiib_} g~ oifisu : {64’}



This is the complex potential for the elliptic cylinder moving in an infinite hquid with velocity
U inclined at an angle B with the x-axis. In particular, if the elliptic cylinder moves parallel
to the x-axis, so that § = 0, then '

w==0U{a+b)e-5m, (65)

1
2

1.15 The Aerofoil

The aerofoil used in modem aeroplanes has a profile of “fish" type, indicated in figure.
Such an aerofoil has a blunt leading edge and a sharp trailing edge. The projection of the
profile on the double tangent, as shown in the diagram, is the chord. The ratio of the span
to the chord is the aspect ratio.

The camber line of a profile is the locus of the point midway between the points in
which an ordinate perpendicular to the chord meets the profile. See figure 2,15

The camber is the ratio of the maximum ordinate of the flow round such an aerofoil
on the following assumptions ;

1. That the air behaves as an incompressible inviscid fluid.

2. That the aerofoil is a cylinder whose cross-section is a curve of the above type,

3. That the flow is two-dimensional irrotational cyclic motion.

The above assumptions are of course only approximations to the actual state of affairs,
but by making these simplifications it is possible to arrive at a general understanding of the
principles involved.

It has been found that profiles obtained by conformal transformation of circle by the
simple Joukowski transformation make good wing shapes, and that the lift can be
calculated from the known flow with respect to a circular cylinder,

1.16 The Theorem of Kutta and Joukowski

Statement : [f an aerofoil of any shape be placed in a uniform wind of speed V,
then the resultant thrust on the aerafoil is a lift of magnitude kpv per unit length and
is at right angles 1o the wind, where k is the circulation round the cylinder.
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Direction of flight
Figure 2.15
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H ] -
| L

Figure 2.16

Proof. Since there is a uniform wind, the velocity at a great distance from the aerofoil
must tend to the wind velocity, and therefore if | z 115 sufficiently large, so that we may wnle

dw A B

==Vele 4 —4—4 ...
de z ot (66)
where @ is the angle of incidence or angle of attack.
Thus
w= Vzeh —A]nx-—E-r
.
and since there is circulation k, we must have
ik
A== (67)
an

for In z increases by 2ni when we go once round the acroforl in the positive sense.
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From (66) and (67) we get,
kV . k? +8n?BVe'e

dw )2
ke =WVIipgin oo _pim -,
( dz nz dmiz- Ll

If we now integrate round a circle whose radius is sufficiently large for the expression
{68) to be valid, the theorem of Blasius gives

X -iY = (%ipjﬂni[ ik"-.-’: a )

= - jkpVe
s0 that, changing the sign of i we obtain

.I n—
X +iY = kpve'(3*2),
Comparison with above figure shows that this force has all the properties stated in the
enunciation,

1.17 Motion of an Elliptic cylinder

(i} To determine the velocity potential and stream ﬁmci‘r'mr when an elliptic
eviinder moves in an infinite lguid with velocire U parallel 1o the axial plane through
the major of a cross-section.

For any cylinder moving with velocities U and V paralle] to axes and rotating with an
angular velocity w, we know that on the cylinder

lpz‘u"x-U}w%m{:I +¥% ) 4 constant (A, say).

Here
V=0,ws=0D
Hence the stream function is given by
y=-Uy+A. (69)
Lat the cross-section be the ellipse

5
o LSO
—=1.

g2 +b3
This is the sane as £ = a, if a = ¢ cosh o, b = sinh « and ¢ = a* — b%, where
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x = ¢ cosh £ cos n, (70}

y = ¢ sinh £ sin n. (71)
Using (70) and (71}, (69} becomes
w = — Uc sinh a sin 1 + A. (723

Since w contains sin i and the liquid is at rest at infinity, w must be of the form
¢ sin 1. We therefore, assume that

b + iy = Be” H+in (73)
s0 that

y = — Be ™ sin 1. (74)
Then at boundary £ = o, we must have for all values of 1.

A=0, B = Uce" sinh a.

w = — Uce® ™ sinh « sin 1 (75)

is a stream function which will make the boundary of the ellipse a stream line, when the
cylinder moves with velocity U,

But
1
csitha=band e= =(a+b): (76}
a-h
Using (75) and (76}, (7) can be written in the form
1
wzﬁt.m(-:_f—:]*cvt sinn. )
Also from (75),
1
¢I=Ub(§-t—gjz e~ 5 cosT). (78}



Hence we oblain

|
w=¢+iw=%(a+:]zc‘*"-+"ﬂ’. (79)

a ——
(ii) To determine the velocity potential and the stream function when an elliptic

eylinder moves in an infinite liquid with velocity V parallel to the axial plane through
the minor axis of a cross-section.

Proceeding as in (i), we can obtain

!
¢:Va(—:—t~§~): e~ % cosm. (80)
1
m:Va(:tE)z e~ % sinm, (81)
and
I
w:iVa(?*:)z e (&), (82)

(iii) To determine the complex potential when an elliptic cylinder moves in an
infinite liguid with a velocity v in a direction making an angle j3 with the major axis
of the cross section of the cylinder.

The components of v along coordinate axes are

U=vcosf
and
V=vsinp

Let w, and w, be the complex potentials corresponding to the motion of the cylinder

with velocities U and V respectively. Then from (79) and (82), we obtain

1

w, =Uh(:t:)* e - (&+in)

B3 |

=

|

=bvcusﬂ[a+

) e-{ﬁﬂ'n}!
a.—

o

and



b | -

y a+b)
W = 1va g—{&+m ]
d [a—b

1
=iav5inﬁ[%]2 g-t&mm}

Hence the complex potential due to velocity v is given by
W= W o Wy

Ll
=cu[ﬂ)" P TPt et 4
a=h

where £ = E + in, b = ¢ sinh «, a = ¢ cosh a. Thus
w = v(a + bje™® sinh(a + ip), since ¢ = a’ — b%.

1.18 Liquid Streaming Past a Fixed Elliptic Cylinder

To determine ¢ and y for a liquid streaming past a fixed elliptic cylinder with
velocity U parallel to major axis of the section.

Superimpose a velocity U on the cylinder and on liguid both in the sense opposile to
the velocity of the liquid. This brings the liquid at rest and the cylinder in motion with
velocity U. Hence, some suitable term must be added to each of the expressions for ¢ and
w obtained in (69) of Art. 1.17. When the stream flows from positive x-axis to negative
X-axis, we have

o __odw _ (83)

Accordingly, we must add a term Ux to ¢ and Uy to y as obtained in Art. 1.17. Thus,

we have

1
¢=U1+Ub[:—t-:-:=]z e~ 5 cost

. 1
| !
=Ufa? -b?)2 cnshﬁ:nsn+w[ﬁ)z =5 cosT). {84)
and
1
w=Uy—Ub[a+h]3 e~ % sinm
a=b
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Bl | o

=U(a? -hl]%sinhtsinq—ﬂb[ﬁ] e-4sinn. (85)

hien the complex potential is given by

w = Uz + Ube® %, (86)
Another form for ¢, y and w, we can be obtained as
$ = Uce* cosncosh( § —a ), (87)
y = Uce® sinnsinhi E—a ), (B8)
wi
w=U(a+b)cosh{{-a). (B4)

v hich is the result (63} obtained in Section—1. 16.

1.19 Rotating Elliptic Cylinder

T determine @ and w when an elliptic cylinder is rotating with angular velociry
e 1 an infinite mass of the liguid at rest at infinity.

For any cylinder moving with velocity U and V parallel to axes and rotating with an
angular velocity w, we know that on the cylinder

$=V1—U}r+%-(ﬂ{xz+'f1:'l+i:unslant,ﬁa}'a’h (90)

Let the cross-section be the ellipse

x? y?

F+£= =],

This is the same as E = @, if a = ¢ cosh &, b = ¢ sinh @ and ¢ = a® - b*. The elliptic
coordinates (&, ) are given by

x=ccoshEcosn, .
y=csinh&sinm. _ (91)
Here
U=V=0
So using (91), (90) reduces to
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1.|i=£r-n: “{cosh2E+cos2n)+A. (52}
Sitee, v ocontains cos 2 and the hquid is at rest at infinity, yw must be taken in the
bonn
y=DBe-2% cos2n Rl
and lience
¢ =Be =5 sinh2 n. iy
Then at the boundary £ = @, we obtain for all values of 1

B=—i~{m:1|:3ﬂ

ﬁz—;:mcl cosh2a,

Thus ¢ and w reduce to

¢=i—m{a+h]1c-=lsiu2n, (4953
w=::—rm{a+h}zﬂ-1¢ cos2 1. R

Hence the complex potential function is

m=_l::jmiﬂ.+h}3 e =26 vsince L =E + in. 97

1.20 Motion of a Liquid in Rotating Elliptic Cylinders

Let the elliptic cylinder containing liguid rotate with angular '.-'(:I:ﬂ:it}r . The streas
tunction w must sanisfy the Laplace's equation
Vig=0
and on the boundary it satisfies the condition
wré—m[x-‘v:ﬂ 1+ AL {08
We assume that
w = Bix® = y%). {99}
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On the boundary of the cylinder, we must have

xa Y

A/(3-30) af(-8-10)

We also know that the boundary of the cylinder is

x2 ¥? _
= +h3 =
Comparing (100) with (101) we get
~1..a2-h?
Sl
s0 that
21 at=b P
2P T
Then from (99)
B a2 —hi
T 2 4+b2 o

The magnitude of the velocity § is given by

2 2
oo(-2)(8)
1 O oy

= i 2 (Ei_'.ti][lz +y? ).

al +b?

K.E. of the ligquid contained in rotating cylinder 15 given by

T= %p‘”q?dxd}'

3 (a2 -b2)?
Syt T

(100)

(101)

(102)

(103)

(104)

(105)

1.21 Flow Past a Plate

If b = 0, our ellipse degenerates into the line joining the foci, namely a = 0, and
therefor a = c. Hence for the flow past a plate inclined at angle 8 to the stream, we have
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= Uncosh{{=i0)
The stagnation points still lie on the hyperbolic branches.
n=08,n=n+0.
The speed becomes infinite at the edges of the plate, so that the solution cannol represent
the complete motion past on an actual plate.

Im terms of #, we have

w=U{zcosB—iJz2 —a° sinh).

When the plate is perpendicular to the stream, then § = : . s that

©=-iUJz¥at.

1.22 MHlustrative Solved Examples

Example 1 :

In the case of two dimensional motion of a liguid streaming past a fixed circular disc,
the velocity at infinity is U in a fixed direction, where U is a variable. Show ik the
maximum value of the velocity at any point of the fluid is 2U. Prove that the force necessary

to hold the dise is 2mU . where m is the liquid displaced by disc.
Solution :
The velocity potential for the liquid streaming past a fixed circular disc 15 given by

2
¢=U(r+a—r—Jcnsﬂ. {n
where a is the radius of the disc. This gives

ﬂ= [I—“E-]cmﬂ and i"1—l=—[r+[lz ]sinﬂ
r b

5

or - r
Therefore
z 4 a 3
% I‘:i* ,ﬂ_-z - -‘12 =
dmf = | 4| w—— =U3[!----—] gl 'F:+L|3(I+--—- sin * O
8 [ ar T &o 7t r? ] .
Ayl 4
-u? [I -2 cos20+22 . 2
r r
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which is maximum with respect to 8 when cos 28 = - | i.e. 20 =  and then

" s, 28t at’
g* =0 =t
. re e

Now g is further maximum with respect to r when r is minimum, i.e.. whenr = a.
Hence the required maximum value of g is given by

gq = 2lL
By Bemoulli’s equation, the pressure p is given by
pP_d |
—= e e F(t
i q +F(L). i3
Using (1) and (2), (3) reduces to
P 2a

1
E‘=F(t'}"2 [I—

Putting r = a, the pressure on the boundary of the disc is given by

2 q 2
t:m.29+-—— ]+U( +——JGDSH.
rl r4 r

E=F“}-—2 UZsin2 8+0.2acosH.
P

Then the resultant pressure on the disc
=I;‘|{—pcnsﬂ:|&dﬂ=—pa jﬂh[F{l}—IU2 sin? B+ ZUacﬂsﬂ]dH. by (4)
=—2pa1[}'[j!cn53 Bde=-2malpU=—2ml since m = ma’p

Hence the desired force necessary to hold the disc is 2m.

Example 2 :

A circular cylinder is placed in uniform stream, find the force acting on the cylinder.
Solution :

We know that the complex potential for the undisturbed motion in a uniform stream
with velocity components U, V is given by w = (U + iV)z. Using Milne-Thomson’s circle
theorem, the complex potential for the present problem is

w=(U=iViz + (U +iV) (a'/z)
Therefore
% =U-iV-(U+ Ii‘u’} (a’fz)
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If the pressure thrusts on the contour of the fixed circular cylinder be represented by
a force (X, Y) and a couple of moment N about the origin of co-ordinates, then by Blasius’

theorem, we have

x—i*r=%ipjc[%]'dx=%ipj{m—m—{mw;{a! 1271} dz=0

s0 that
X=0 and Y =0-
and

s 1 da \*
N;Realpanﬂf——ipj'c EL-—-—] dz

dz

3 .
= real part uf—%p]’c z{ﬂ—i?—{U—iV]:—]} dz

= real paﬁof—%p{—l{[ﬂ +V2)a2}2ri=0

Therefore X = Y = N = 0, showing that neither a force nor a couple acts on the

cylinder.
Example 3 :

A circular cylinder is fixed across a stream of velocity U with a circulation k round the
cylinder. Show that the maximum velocity in the liquid is 2U + (k/2mu), where a 15 the

radius of the cylinder.
Solution :
The velocity potential ¢ for the motion is

_ a? -k
¢—U[r+ = ]msﬂ- >

“where r is measured from the centre of the cross-section of the cylinder.

Then the velocity q is given by

pr - _.ﬁ 3+ ....I.ﬂ]z
= ar T8

az?
r2

=U? [1—

ri
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k2
- ]smﬂ-b:‘————

girg? '

z
=12 [1—£m25+—] Uk(
F* r Rt r
which is maximum with respect to r when r is minimum, i.e. whenr=a.
Thus

2 Uk k2
2 2U2 (2-2 ~——sin@+
q ( cosB )+ = sin Anial

2
dxiag?

=4U2sin? H+%sinﬂ+
na

k. 2
=(2U5inﬂ+mJ )

Now q is further maximum with respect to 8 when sin 8 = 1 i.e. B = 7/2. Thus, from
(2) the desired maximum velocity is given by
EY k
) 7 3 . .- i
q ( U+2n ] ie. q 2U+2ﬁa'
Example 4 :
An infinite elliptic cylinder with semi axes a, b is rotating round its axes with angular
velocity  in an infinite liquid of density p which is at rest at infinity. Show that if the fluid

is under the action of no force, the moment of the fluid pressure on the cylinder round the
center is

—1-1:[::-:"E where ¢ =a’+h*

8 dt
Solution :
Using Bernoulli’s equation, pressure p at any point is given by
P 1 a¢
_— C - 2 e ——
q 2975 (n

Now for an elliptic cylinder rotating with an angular velocity @ in an infinite fluid,
velocity potential ¢ and complex potential @ are given by

¢=%m{a+b}? e-24 sin2y (2)
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=%im{a+b}3 ek, (3

where
z=x+iy=ccoshf and C[=E+in. (4)
Therefore
2
dm dl:- 1. y
= =|= b2 e-25 (=
0 =|%|" . Jio(a+b)? e2¢ (D)t
@2 {a+h)4| g-24e2M iz
B de? smh{.’;-i-lrn'
w? (a+b)* e s i
- * T (5
d4c? sinh? E +sin? n
and
G g dio
—_— =& fucic ol
= 4{n+t~} sin2n at ()

Using (1), {5) and (6), the pressure at any point on the boundary of the ellipse
E = « is given by .
p 02 (a+b)l eHn |

; dm
1 - h)2 e-2a gin? n—n
P L Be? (sinh? |1+sm'.-'|,]|J_JfI“HL ) R ndl "

Now the pressure on an elementary are ds of elliptic boundary at a point P (of
eccentric angle n) is pds. Let 6 be the angle between tangent and radius vector.

Then from calculus, we have
cosf= i (8
Now the moment of the fluid pressure on the element ds about the center

== prds cos 0 =—prds, by (8)

=p.%{a9 +b2 )sin2 ndn [sincn, rd:=-*%{a1 +b? h-inanq]
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Therefore, the required lotal moment of the liquid pressure on the clliptic ¢y linder
about the centre is

E‘_-:*h—“ J' psind ndn
al—hi ix m 2 Eﬂ.-!-b}d' el (a+h)? | gy
= —— o : T atn gy nd® s
* " [ Bc? sinh? o +sin? n 4 ! ﬂd1 sim 2 niedn

_al-p? j3=(a+h]2

3 y e~2® 5in? 2n [:i—[:] dn (other integrals vanish)

_(a?-b?)(a+b)?e?" gurin .
SR e 2
c* (a+b)? a—b dwpzal-cosdn E T TP | .
..,._,R_.__mp = jn 5 —dn [amce.:, =al—-hl ¢ o
—cZlai-bl) (|p I 4 dow
- 8 P "T8™

Example 5 :
In the two-dimensional irrotational motion of a liquid streaming past a fixed elliptic disc

x: ¥°
a? +h3
that if

=1, the velocity at infinity being parallel to the major axis and equal to U, prove

X + iy = ¢ cosh (£ + in), a-b=c and a=ccosh o, bscsinh o,
the velocity at any point is given by

,a+bh sinh? (E-a)+s5in? n

221
3 a=-b sinh? £ +sin? n
: : U(a +b}
and that it has maximum value - —=—.—." at the end of the minor axis.
il

Solution :
The velocity potential for the case “Liguid streaming past a fixed elliptic cylinder™ is
given by
w = Ufa + b) cosh (E — a) n
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MNow,

_|dw)_ldw 4|
T=1dz |7 ag dz|’

Now,
un(a:b}l ainl:::ni—;u} {using (1) and z = ¢ cosh ] (2)
But
sinb(G—at ) =|sinh(E—a+in)|, asf=E&+in
= sinh{ £ - o Jeosn+icosh( £ ~a )sinn|
= Jsinh? (E-a)eos? n+cosh? (E-a)sin? n
= Jsinh? (E—~a)+sin? q
Similarly,
sinhg| = sinh? E+sinn
Since,
b2 PE o besin 2 12
o=l B
so that

inh? (E—o )+5in2
a+h][5lﬂ (- )+sin TI] i

- G0
4 [E-h sinh? E+sin?

{3) gives the required value of velocity.

To determine the maximum value of g, we rewrite (3) as follows :

2 2 fath ]_sinh1§+sin={§—u]
g =X [a-h [ sinh2 £ +sin? 1 @
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But sinh & > sinh{ £ — & ). Hence for a given £, (4) shows that g will be maximum

when sin i Is maximum 1.¢. 1= g Then (3} gives

l+sinh? (E~-a) a+bcosh? (E-a)
I =12 3+h) Dol 2[ ) Lk
2 (Eﬂb 1+sinh? E v a-b cosh? § ()

T [ a+b )[ Eﬂshf,cnshu—sinhf,sinﬂ:r

a-b coshg
=Uz[ﬁ){mhu—mnhgsina]a,- (6)

showing that q will be maximum when tanh £ is minimum i.e. £ is minimum. Since we
have an elliptic cylinder surrounded by liquid, the minimum value of £ is oo. Hence putting
£ = a in (3), the required maximum value of g is given by

b 1 a+h el —
z=Uz("“+ ] =Uz[ )__ as a = c cosh a
(9 max ) a-b Jcosh? @ a-bh/ a?

3 _hi
=Uﬂ(a+h]-“ b as ¢ = a* — b?
a=-b a2

o] 222

Example 6 :

A source is placed midway between two planes whose distance from one another is
2a. Find the equation of the streamlines when the motion is in two dimensions and show
that those particles which at an infinite distance a/2 from one of the boundaries, issued from
the source in a direction making an angle /4 with it.

Solution :

The transformation £ = ie™* transforms the strip of breadth 2a in the strip of breadth
2a in the z-plane into the upper half of the plane {-pane, the origin O in the z-pane being
midway between the two walls. The points B, C coincide with (B, C,), £ = 0.

When z =0, £ =i, i.e., the point P in the C-plane.

46



Thus in the z-pane there is a source m at O’ and equal sink at infinite distance, so in
the £-pane there will be a source m at P and a sink (—m) at (B, C) and hence an image
souuce m at the point = i.

Therefore,
w=-mlog{C—i)-mlog{C+i)+mlogl

O

|
=—mlog(+5-1)
T = mhg(C+g

=-mlog

L i A B -
==—m]nag[i:h —ie ‘2a ]::—mln-gi[:h —e 1a ]

£L L

—mlﬂg(:ﬁ —-e 2a )—mlﬂgi

Omitting the constant, we take

= m
w =—-mlug[=h -¢ a ]

or ,

w = - m log(e® — &%), | (1
where

¢ =nlla (2},
s0 that
w = —m log (e *+¥ _ g=ix+ i),
Therefore
§+iy = —-mlog[ 2coscysinhcx + 2 isincycoshex ]

and so

: 2sincycoshcx

W man O it | ey
2coscysinhex tanhex

Streamlines are given by w = constant, i.e., tan cy = K tanh cx,

. Yy 144 :
i — =K — .
Le tan = tanh 52 [using (2)]
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When x = =, y = a/2. Hence K = 1. Therefore streamlines become

Y X
tan — = K taph —~.
an Ta an 24 (3
DIFf, (33 werd. x we have
2a dx cosh? 2x
a
i
ny
dy '3,
dx el
h2
2a

Example 7 :

Use the transformation £ = e™* 1o find the streamlines of the motion in two dimensions
due 1o a source midway between two infinite parallel boundaries (assume the liguid drawn
off equally by sinks at the ends of the region). If the pressure tends to zero at the ends
of the streams, prove that planes are pressed apart with a force which varies inversely as
their distance from each other.

Solution :
We know that the transformation
q = c!I.E.l"al [I'}

transform the infinite strip A, B., C.. D in the z-plane with origin at O into the
upper half in the {-plane with origin at (B, C) which coincide with B, C, at L =0.
The point z = aif2 goes to { = e™ = i at the point P in £-plane. There is a source at
O in the z-plane and equal sink at infinity, therefore in the C-plane there is a source of
strength m at P, sink of strength (—m) at (B, C) and an image source at £ =—i.

The complex potential is given by
w=-mlog({-i)-mlog{L+i)+mlog =-mlog(L+L"')
=-mlog(e=® ye-=h)  using (1)
=-mlog2Z-mlogcosh(nz/a).
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Therelore

we=—mlogcosh{ mz /a), omilting the constant term in w.

From (2},

dw mi nz m
— TN smarae kmh == ¥ " = * 3
! : = and g

We know that

E-F-%ql:cunstant:%qi. [p.=0]

18 ‘E‘=Egmz(l—tﬂﬂh:EJ=n-mz | 3)

Now, any point on the upper boundary is z = x + ia and hence (3) gives

P

2 - - : :

SR cushl(E+i1r) L l:'l::EhEE;lE
a

If F be the force with which the planes are pressed apart, then we have

F=2[ pdx=

El

nipm? . nlpm? = mpm?

. Ul ,i[mhﬁ} e

K 2 k

i} S

! X a= n a
cosh 2 ==

showing that F o 1 je. the force varies inversely as the distance between the planes
a

apart.
1.23 Model Questions

Short Questions :
1. Show that the curves of equivelocity potential and stream lines intersect orthogonally,

2. Define stream function (or current function).
3. State the boundary conditions for the motion of a cylinder in a uniform stream.
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7.
8.
gl

Define MTow and circolation for fluid motion.

Find the expression for the complex velocity potential in the case of motion of a
fluid with circulation about a eircular cylinder.

State Milne-Thomson Circle theorem, Blasius theorem and Kutta-Joukowski
theorem.

What is meant by conformal mapping? When is it said to be isogonal?
Define Schwarz-Christoffel and Joukowski transformations.

What is meant by aerofoil? Define camber stating the assumptions required.

10. Define elliptic coordinates.

Broad Questions :

P

Discuss the motion of a circular {or/elliptic) cylinder moving in or infinite mass of
the liquid at rest at infinity with velocity U in the direction of x-axis.

Discuss the motion of a liquid past a fixed circufar (or elliptic) cylinder.

Show that if there is a streaming past a fixed circular (or elliptic) cylinder with
velocity U in the negative direction of x-axis and there is a circulation of swength
k. then the cylinder experiences an upward lift amounting pkU, p being the
density of the liquid.

Deduce the equation of motion of a circular cylinder moving in a liquid ar rest at
infinity. Hence show that the effect of the presence of the liquid is to reduce the
extraneous force in the ratio (o — p) : (o — p) where o, p are the densities of
the cylinder and liquid respectively,

Determine the velocity potential and the stream function at any point of a liquid
contained between two coaxial circular cylinders.

State and prove Milne-Thomson circle theorem. Apply the theorem to find the
complex potential of (i) a uniform flow with velocity U along negative x-axis past
a fixed circular cylinder and (ii) a uniform stream at incidence B with positive x-
axis.
State and prove Blasius theorem and the theorem of Kutta-Joukowski.
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gl

Determine the complex potential when an elliptic cylinder moves in an infinite
liguid with a velocity v in a direction making an angle B with the major axis of
the cross-section of the cylinder.

Find the complex potential when an elliptic cylinder is rotating with constant
angular velocity in an infinite mass of liguid at rest at infinity.

Problems :

Show that when a cylinder movies uniformly in a given straight line in an infinite
liquid, the path of any point in the fluid is given by the equations

dz _ Va?  dz'_ Va?

dt (z'-vi)2' dt  (z-Vi)?°

where v = velocity of cylinder, a its radius, and z, 2" are X + iy, x — iy and x. ¥
are the coordinates measured from the starting point of the axis. along and
perpendicular fo its direction of motion.

If a long circular cylinder of radius a moves in a straight line al right angles
to its length in liguid at rest at infinity, show that when a particle of liquid in
the plane of symmetry, initially at distance b in advance of the axis of the
cylinder has moved through a distance ¢, then the cylinder has moved through
a distance

A circular cylinder of radius a and infinite length lies on a plane in an infinite depth
of liquid. The velocity of liquid at a great distance from the cylinder 15 U
perpendicular to the gencrators, and the motion is imrotational and two-dimensional,
Verify that the stream function is the imaginary part of w = mall coth {nafz),
where z is a complex variable, zero on the line of contact and real on the plane.
Prove that the pressure at the two ends of the diameter of the cylinder normal to
the plane differs by
(1732)*pU2,
The space between two infinitely long cylinders of radii a and bia > b)

respectively is filled with homogenous liquid of density p and is suddenly
moved with velocity U perpendicular to the axis, the outer one is being kept
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fixed. Show that the resultant impulsive pressure on a length [ of the inner
cylinder is

b2 +a?
b? —5?
Prove that if 2a, 2b are axes of the cross-section of an elliptic cylinder placed
across a stream in which the velocity at infinity is U parallel to the major axis
of the cross-section, the velocity at a point (a cos 1, b sin 1) on the surface

npal .

U{a+b)sinn

(b?cos? n+a?sin? )"

and that, in consequence of the maotion, the resultant thrust per unit length on that
half of the cylinder on which the stream impinges is diminished by

Th2pl)2 TE oy 2
—p-[l-("ﬁh] tan = A[a b) }
a=-h a-b a+h

where p is the density of the liquid.

An elliptic cylinder, the semi-axes of whose cross-sections are a and b, is moving
with velocity U parallel to the major axis of the cross-section, through an infinite
liquid of density p which is at rest at infinity, the pressure there being I1. Prove
that in order that the pressure may everywhere be positive

2a*Il

pU? « —=,
2ab+b?

An elliptic cylinder, semi-axes a and b, is held with its length perpendicular o, and
its major axis making an angle & with the direction of a stream of velocity V.
Prove that the magnitude of the couple per unit length on the cylinder due to the
fluid pressure is

[Ip{a? —b? )V sinOcosB

and determine its sense.
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8. A rectangle open at infinity in the x-direction has solid boundaries along x = ().
v =0 and y = a. Fluid of amount 2rm flows into and out of the rectangle at the
corners x =0, y =0 and x =0, y = u respectively. Prove that the motion of the
fluid is given by

w = 4in log tanh (nz/2a).

@, Show that the transformation 2=(a/ = ]{ m —seg -l C_,} £ =gy
where 2 = x + iy, 0 = + iy, give the flow of a straight river of breadth a, running
with velocity V at right angles to the straight shore of an otherwise unlimited sea
of water into which it flows.

1.24 Summary

In this chapter, two-dimensional irrotational motion of an inviscid liquid past circular
an elliptic cylinder has been considered. In addition. motion of these cylinders in the hiquid
has also been taken into account. Due to wide applications, Milne-Thomson circle theorem
and Blasius theorem are discussed. Also a sketch of aerofoil is given.
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Unit 2 O Irrotational Motion in Three-dimensions
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2.0 Introduction

_ We now describe irrotational motion in three dimensions with particular reference to the

mation of a sphere, ellipsoid and solids of revolution in an infinite inviscid incompressible fuid.
The stream function and velocity potential are obtained. Tt is to be noted that the powerful
tool of the theory of complex functions cannot used in three dimensional problems.

2.1 Motion of a Sphere

We propose to study irrotational motion in three-dimensions with reference 1o the
motion of a sphere. We shall consider spherical form of solution of the Laplace’s equation

1y Ay o
a1p %4 0% "
dxt oy? oz?
which, in spherical polar co-ordinates (r, 8, w). reduces to
52 2 2
gt g@_‘_ | 9%% cntﬁ_ﬂf_+ 1 d ¢,=ﬂ. 23

— + ———
G2 rédr r2902 r? 90 risin?@dw?
When there is symmetry about z-axis, ¢ is independent of w and hence (2) reduces Lo
52¢+3ﬁ+_1_53¢+cmﬂﬂ=
dr2 rgr r? ab? rt o8
Substituting ¢ = f{r) cos 8 in {3), we see that

¥ .
(gl_f__'_gg{ ]cosﬂ— {--r—qcnsﬂ--%ﬂf{rjzﬂ,
dr? rdr £ r?

0. (3)

so that f(r) satisfies
| d2f . di
3 2r—=20(r)=0
* dr? > dr (£
which is a honiogenous ordinary differential equation and the solution of the equation is of
the form f(r)= m+—'i— -
F -
Hence the solution of the equation (3) can be taken as

¢r=ffr}cmﬂ=(m+;-ﬂi-]cmﬂ. (4)

55



2.1.1 Irrotational motion of liquid in which the sphere is moving :

Let a solid sphere of radius a is moving with velocity U through a homogenoeus liguid
which is at rest at infinity. Let O, the center of the sphere, be taken as the origin. We
choose Oz in the direction of velocity U so that the motion is symmetrical about Oz,
Let P(r, 8, @) be any point, and R' denote the region r = a while R is the region 1 =
a. S(r = a) is the sphere which separates R and R'. If the motion is irrotational then the
velocity can be expressed as q = ~%d, ¢ being the velocity potential. Thus the equation
of continuity V.g = 0 gives

Vip=10 in R’

Since there is symmetry about the z-axis, ¢ is independent of w and so V3§ = 0
reduces o -

' 286 1 270 cotb 9P
€. e —— e e = ), i R 5
Y aT Trar riaer r? o8 . o
Boundary conditions are as follows :

{i) As the liquid is at rest at infinity, we must have

M

_E_=|;] as r —» m, (i
r

(i) and as the normal velocity on the sphere is U cos 8, we must have
—%*Umsﬂ on S(r = a). (7)
Since § is harmonic and normal derivative is prescribed at the boundary S(r = a), so0
$ is unique except for an additive constant. .
The boundary conditions (i) and (ii) suggest that ¢ must be of the form fir) cos 8 and
hence it is assumed as

¢=[A.r+ [i jcnﬁﬂ. (8)
ra.
From (8)
r@.—.—[ﬁ—ﬂ]cmﬂ. (9
ar rt



Using (6) we get
Acos8=0 je, A=
Using (7) in (9} we get,

UcosB = ;Tﬂcusﬂ . for all values of @,

a
so that
Ua?l
B=——.
2

Thus

_Ua? cosB

- irz

which determines the velocity potential for the flow.

We now determine the equation of streamlines of the flow. The differential equation

of the streamilines is

de _ rd
ap/or o/ rob
i dr __ rdo
Ua? cosO  Ua?sin®
r 2rt
so that
dr _2cos8 .0
r sinQ
Integrating.

log r=2 log{sin 0} + log C  (C is constant)
e, r=C sin* 8

which is the equation of streamlines.

2.1.2 Equation of motion of a sphore :

We take the origin at the center of the sphere and the z-axis in the direction of motion.
Let the sphere move with velocity U zlong the z-axis in an infinite mass of liquid at rest

at infinity. The velocity polential of the motion 1% given by
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Ua?
T — "El
\ 2rt o
50 that

b  ya?
E = —?—WHB.

Let P(a, B, @) be the spherical polar co-ordinates of any point on the surface of the
sphere. Then the elementary area ds at P is adf.a sin 8da. Again the value of q};ﬂ at P
r

is given by

*ﬁ -_——EJEECHEE
ar raa 2 | (4

The kinetic energy T of the liguid is

T, =2 ffe50 as.

integrated over the surface of the sphere, p being the density of the liquid. Using {13), we
ohtain
s g U?acos? @
T == —-_—
' ) J;=n[

3 ]-{ a? sinBdBdea )

=l

(14}

where, M’ = 2 “; : p is the mass of the liquid displaced by sphere.

Let o be the density of the sphere and M be the mass of the sphere so that

M=§n¢a~‘ (15)

ot

and K.E. of the sphere is T, = %MUZ, [ 16)
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Let T be the total kinetic energy of the liquid and the sphere. Then

T:%(M+%M’JU?,hy(i}and{'ﬂ- (17)
Let Z be the :-.the;rnal force parallel to the z-axis (1.e., in the direction of motion of
sphere). Then from the principle of energy, we have

Rate of increase of total K.E. = rate at which work is being done

- i e
ie., dl[?(M+IM JU j| ZU
ic., (Mq-lm']mj:zu_whcmﬂ=ﬂ
2 dt
™ MI'J=E—%M'I'J. (18)

Let Z' be the external force on the sphere when no liquid is present. Then from
hydrostatical considerations, there exists a relation between Z and Z' of the form

Z = [(o- pYalZ (19)
From (18} and {19}, we have
l

MU+2M'I:I=[{ﬂ—pHﬁ]E'
Le., [M+%M‘Jﬂ={iﬁ—iﬂfﬂ]z'
.. MU = N: G;P ;
M+—1M
4moa
. . 3 a-p_,
- MU = Z
: . 4ncat  ld4noa’ o
3 2 3
i, MU=-”_IF' yAd (20)
ﬂ'+'2'p

Equation (20) shows that the whole effect of the presence of the liquid is to reduce the

external force in the ratio (o — p) : [ u’+%p )
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2.1.3 Fixed sphere in a uniform stream :

Let there be a uniform stream of velocity V in the negative direction of z-axis and the

sphere be kept fixed. R’ (r2a) and R(r<a) are the two r:gihns separated by the
sphere 5(r = a). The motion is irrotational and the velocity potential satisfies

V% =0 inR" (21)
Boundary conditions are as follows :
(1) As the sphere is fixed, we have

Ed : .
= =0, on S{r=a) {22)
(i) the infinity condition gives
§~Vz a5 1 — e, (23)
The boundary condition (ii) suggests
p=Vz+p (24)
where §y = 0 as r = =
Equation {24) gives
Vi, =0 inR' (25)
and from (24) by using (2) we get
%=V%§=—\-’m&ﬁ on S. (26)

The conditions (25) and (26) suggest thart ¢, must be of the form

¢, =[Ar+ B: ]msﬁ (27

A, B being constants.
Using the conditions {25) and (26) we get,

_atv_
¢' -—21_2 G{'t.'-ﬂ'

t =vrcnsﬁ+£—?'n'icusﬂ.

b ]
-
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. . . ‘ a’V i
Here Vr cos 0 is the velocity potential due to the uniform stream and 2—1»::059 is
r -

the velocity potential due to the presence of sphere.
Now we determine the lines of flow relative to the sphere.

The streamlines are given by the differential equation

-
ch/er o/ rod
ie dr _ rd6
(..11_3_) g _Ei_].-
VL\] S cosB V[Hzrl sin®
3 a3 2
—zmt[}dﬂ=2r—f-5—m£=(—-§~r -!)dr,
r*-a' r r?-a? r
Integrating

—~2logsin @ =log (r' —a’) —log r - log ¢

where log c is integration constant.
: a’
ie., r?sin? H[]~—)=c,

On the surface of the sphere

.

_ _la_‘t'_ _3Vsinb
qﬂ I'aa - 2

We note that g = 0 for 8 =0, m and it is minimum for 8 = =/2, 37/2 and the minimum
value is ﬂ
2
Hence & = 0, = are the stagnation points on r = a.
2.1.4 Moving concentric spheres :

Let the region between iwo concentric spheres of radii a and b(> a) be filled with
liquid which is homogenous and incompressible, R be the region between two concentric
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spheres ie., R(a <r<b}. Impuises 1, and Tl are applied on the spheres S,(r = a) and
S40r = b} respectively in the z direction so that the two spheres star to move with velocities
U and V respectively in the positive cirection of z-axis. We intend to determine the resulting
Moo,

Since the motion 15 imotational and symmetne about z-direction, the velocity potential
& satisfies the equation

P a2 ¢
ﬂ'd}+2ﬂ+l ¢'+c+:=rﬂ_¢__

= et =0. | : ;
a2 rar e R mR:{a<r<h) (28)
The boundary conditions are
(i - 2 =Ucos® on 5)(r=a) (29}
() - grq] =Vcos B on Saiar=b {3
The boundary conditions (i) and (ii) suggest that ¢ must be of the form
m B :
'¢i-(|‘ﬂll'-r]_"?— ]cmﬂ (31)
where A and B are constants.
From (31) we get,
o 2B
_Er..,:—(A-—rT]cusﬂ. (32)
Using (29) and (30) in (32) we get
Ua? —Vh3 (U=V)aib?
A d E:
b3 —a? - 2(b* —-a?t)
Therefore, for the starting motion, the velocity potential is given by
1 a’h' (U-V)
¢=F_Ti-[[u3l_l—hﬂ.-'}r+ 53 }ED&B, (33)

In this case, the impulsive pressures on the boundaries when the motion is started from
rest, are pg so that these are given by

acost b ib7
W, o [(a-‘ +-—1—]U--—2—~V:|p on 5y
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27 B3 g 3 2

1 3
s = bogsy [Eu U-—(n-‘+h—]\f}p on S,

The impulsive thrust on the inner boundary is therefore,

F =J; w, cosB.2ma? sin(do

4ma? . :
5,“; P[(al +%)u—%v}n{hi ~ad).

Similarly, on the outer boundary the impulsive thrust 1%

Amh?
fome p[hzu-(izimﬂjv}ubﬂ—an.

3 2

2.2 Axi-symmetric Motion

A motion is called axi-symmetric if it is symmetric about a line, called the axis. Here
the motion is the same in every plane through the axis and the plane is called the meridian
plane. Now taking the axis of symmetry as z-axis and using the cylindrical coordinate
system, every field variable is a function of @(= (y* + x*)"?) and z only.

2.2.1 Stokes’ stream function :

Let the axis of symmetry be the axis of z and let (= (y* + x*)'"*) denote distance
from the axis. Let u, v denote the components of velocity in the direction of the z and @.

Then the equation of continuity is obtained by equating to zero the flow out of the annular
space obtained by revolving a smaill rectangle dwdz around the axis. The total flow out

parallel to z is %{ulmﬂm]ﬂz and parallel to w, the total flow out is %{vlnmﬂz}dm.
50 that by equating the sum to zero we get the equation of continuity as

g &
‘ Elz{um}-'-ﬂm

This is, however, the condition that viodz — vmdw may be an exact differential, and if we
denote this by dy, we get

(v i=40.
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This function y is called Stokes® siream function.
The streamlines are given by
dz _
uov
i.e., mivdz — udw) = 0,
that is, by dy = 0. Hence the equation y = constant represents stream lines.

A property of Stokes’ stream function is that 2r times the difference of its values at
two points in the same meridian plune i3 equal to the flow across the annular surfuce
obtained by the revolution round the axis joining the points. For, if ds be an element of the
curve and 8 its inclination to its axis, the flow outwards across the surface of revolution is

j{ veosO —usin® ). 2 nmds =211:J'[%1—' dx + Edm]zzﬂ:‘[dw =2R{Y,~y,).

i - ; 1
We might also define the value of Stokes’ stream function at any point P as i of

the amount of flow across a surface obtained by revolving a curve AP round the axis, A
being a fixed point in the meridian plane through P; for, this makes

o T o S
w-i‘.n-l-n.[“uﬁﬁ usin® ). 2 nwds

P
=IA( vodz —uwmdw )
and by varying the position of P, we get as before,

oy
e {34)

__1ow i
n= ==irwe andu_m

2.2.2 Irrotational axi-symmetric motion :

Let us consider an irrotational metion for which the velocity potential is ¢. Therefore,

P .\ (35)



Again Stokes' stream function always exists such that

N,
u= wﬂmaﬂdv-maa- (36)
Thus
H_1ow % _ 18y 37
dz Wow dw  ©oz “
From (37)
o (o) _aftéy
oml Oz ol @ 0o
af o af 1oy
nd ﬂz[ﬂm] _&z[mﬂtj
s0 that
o= N, T M ik I ]
fm| T oo oz\ W gz Jmix cxdom
7 1 9y Py
o o’ fm ®Jm? m dz?
a2 2
ie., ?+gm—f—$%=ﬂ. (38)
Again from (37)
N L P
dz| o or oz |
and
Lo S
fwl &z dml| Co
s0 that




+ -2 =0, (39)

Equations (38) and (39) show that ¢ and w are not interchangeable in the way that is
applied 1o the velocity potential and siream function of two-dimensional irrotational
motion.

Now we rewrite (38) and (39} in polar co-ordinates. Let g, and qg be the velocities
in the directions of dr and rd8. Then, since @ = r sin 8 and the velocity from right to left

.1 oYy
across ds is ———, we
oW ds B

B
=,

gy me e

® rod rlsin®

19w dy
Qe T @ or rsind & (40)

Bur in irrotational motion, we know that

)
ar’ P o

S, T W
rtzinB 88 oOr rsin@ ar

i af 1. W1 99  of L N
20\ risinG 20 ) 00r  or| rsin® or

. aiy () ] oy
2 A5 A Pt JEH (O
ie. r : +5ind (sinﬂ ]

X q9r = (41)

and since

_” 2
o’ 42)

=

(43)

Let u = cos 0 so that
sinf—=——, (44)

then (43) reduces to



oty . ... 8
re 2 MH-HE

[ﬂj=ﬂ. (45)

Similarly eliminating  from (42), we get
a rzﬂ]+—_l 4 .*s.'irl'[:'l—-.aE =0
or or &0
8 ) 4 i
i —| ¥ — |[+=—] (1=u2)— |=0
ie., ﬂ:[ ﬂr] ml-( H }514] (46)
which is Laplace’s equation and has solution of the forms r'P,(p) and P, Pa)

being the Legendre polynomial of degree n.

Again from (42), we have

&

:Lp‘=—r?ﬁ=—nr“‘"l"11 or {n+l)jr-"P,_, {47)

au or

oy i apP,

—=fl=uiy—=(1= 1‘_“-“ e [ l=p2yr-nl —

ﬂr{p}ﬂu{" .a,H-'[I-I.'I (48)
On integration, (48) gives us possible solutions for y as

(1-u?) &,  (1-p?) | P,
= r s or 5 ik A (49)

n+l

2.2.3 Solids of revolution moving along their axes in an infinite

mass of liguid :
Suppose that a solid moves along Ox with velocity U and let Ox be the axis of

revolution. Since the motion is symmetrical about Ox, Stokes’ stream function exists.
| oy

Now the normal velocity of the liquid in contact with the surface at P is e On

the boundary, we have

chy . .
s o velocity of the sohd along normal
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i.e., A Ucost = UZZ, where cos = 2°
© O S5 s

ie.. dy = - Uwndo
Integrating,
2
W= _}:T{I_!i - <+ constant
e

L, W= _U;fil“_.g + constant, where @ =r sin 8 (500

: U(l-p?

S s v constant, where p = cos 0 (31)

which is the boundary condition at P.
Again w must satisfy the equation

2 2
, 67y L o
r ey +g|—u-}§|~.l.i._n,whereu~cmﬁ (52)
and it is known that (52) has solutions of th 'fonnl_—lif"“ﬁp—" and M- T
and it 15 kno ) has solutions of the | on e A

As an example, we consider the case of a sphere of radius a, Then withr=a1n{51),
we must have

== (1-p2)+C (53)
Taking n = | in (49), we have the solution of the form
[—pt
y=A— (54)

then at the boundary we must have

A(l=pn?) _ Ua? -
= ey (l-p?)+C
5 : Uad ;
for all values of p. This requires that C=0and A =- e Hence putting these values

and noting that w = cos 8, (54) gives

Ua?sin? B
BLSEs (55)
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Again we know that

(-pey 28 _ 2 _ Ua'sin2@

gy fr 2r?
. op  Ua?
LR, g e,
[/ TR
Integruting
Ua? Lla?
B e Y = e OGS,

2.3 Ellipsoidal Coordinate System

Let us consider the equation

4 | *
oy + 4 + & =
a?+8 b?+0 c?+6

where 8 is a parameter. This represents a family of confocal central conicoids. The above
equation can be reduced to a cubic equation of B, given by

F(O)=x2(b? +8)c? +0)+y? (a2 +0)}c? +8)+z2 (a? +0Wb* +8>
—(a?+0) bt +8Wc? +0)=10. (55)

l,a>h>c¢ (57

Now
F(-m)=+ve,F(-al)=+ve,F(-b¥)=-ve, F{-c?)=4ve F(x)=-ve,
Hence we conclude that F(8) has three real roots A, p, v such that
-aI{v{—bI-r:u-t:-—cI-r;i.,_
Thus through any fixed point (x, y, 2), there are three conicoids represented by
A = constant, g = constant, v = constant
It may be noted that
A = constant represents an ellipsoid,
i = constant represents a hyperboloid of one sheet.
and

v = constant represents a hyperboloid of two sheets.
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MNow we write

0

| & " ¥- R a
at4+d bT4A cl+)

Differentiating with respect to X we get,

f{h)= 1=0. (58)

Jh 2%

r l — ;

s }ﬁx gt +A
e, B _ 1 2x
T ax F'(A)atad]

Similarty

o R L

8y f'(A)b2+n’

gk _ 1 2z

6z f'(A)c?+A°
Direction cosines of the normal to the surface A = constant are proportional to

gr ok O\
[ E’;r 3}; _ﬂ}: ] Similarly, direction cosines of the normal to the surface p = constant

mmﬁmﬂm[aﬂ. %.r- %J.Nuw the cosine of the angle between these normals
is proportional to
aon oo oo
dx dx oydy &z oz
5] R o B }
(A" (p) (a2 +ANa2+p) (B2 +ANb? +p)
4
= e (f (A ) - f
f'[l}f‘m}({ )=f(p)) (59)

which vanishes if f(A) = 0, f{u) = 0. Hence A, p, v give the sysiem of orthogonal curvilinear
coordinates called ellipsoidal co-ordinates. Again A, p, v are the roots of F(8) =0, so thal
F(0) can be written as

F(8) = (A - 8) (u - 8) (v - 6).
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Let us put 8 = — 2%, — b, — c* in (35) successively and we get
" (at+A)a?+pa? +v)
(a2 -b2)a=-c?)

_ (b2 42)(b2 +pu)(b? +v)
(b2 -a? b2 -c2)

|:1::2 +?‘..‘.t|f_4:1+1..|.]r|:4: +v)

(c?-a?)c?=-b?)

Now if ds is an element then

»

e

ds? =h7dh? +hldp? +h]dv?

where
2
h1=r§¥]:+ ﬁ‘ﬁ +(E]2
P an a ) e
hu[iﬁ]ﬂ[?}‘_”iﬁz‘:
h1=[§i):+]’ﬂﬂ+[§ﬂz
R | év v
Now it is easy 1o see that
T . -
(a2 +h}2 (BT 4R} (gl4h)?
samilarly,
U N o v 2%
2 (a?au)? (bZT4u)? (¢ +p)?
TP TI. L. 2!

(al +.'~'.}1';I+-l[-b3 +!.'}3_+{=:3 +v)ito
We can write
(A-B)(pu-0)v-8)
" (a? +E+}{h3+ﬂl]{c14-ﬂ}
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then

}-."' EPL—'U"
(R} = { 111.{‘ Loy
(a2 +ANb2=A)ec? «h)
Thas
- A—u}A=vi
4hi'f o 1‘ ; .!'.J‘..?{.____x e
(a2 A HhT+d e +4)
4hi = (H-AKM-¥)
Do (a?4+pXbapde? +p)
4h? =.. (v-A}v-u)

(a2 +v)ib2+vic? +v)

So the Laplace operator in ellipsoidal coordinates is

& I g hahy & g hihy G g hhy &% ]1
v ._¢= 1 -S— e T [ o B el [ -l e
hyhshy| &k h, &k dul h; du gvi hy dv J

1 z
={u—-v}{!{1 i) ¢+:u—1}(x,, i] ¢.+r;1-m(r=:\,
A e

K, =(a?=A}b2-A)ec?-A)

Ky=(a?+p)b*+p)e? +u)

K,=(az+v)(b2+v)(e2+v)
Solutions of this Laplace equation are called cllipsoidal harmonics.

2.3.1 Translatory motion of an ellipsoid :

We consider the ellipsoid § : L =0,

Jew

] 6

¥

(60)

which moves through a liquid in the direction of x-axis with velocity U, Since the motion

15 irrotational. the velocity potential § satisfies
Vig=0 for L20
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The boundary cond:.ons are

{11 —ﬁ = Jcos®,, on =1
n

where 0, is‘the angle between the normal and x-axis,

1-E1_':_'_-U{__4 -PL=::}1
gk P
since dn =h ,dA , cos@ == E& Thu
o * hy 8
¢0=-Ux on A=0. (6f)
(i1} ¢ 1s regular at infinity
e, &—=0 as A — o (62)

For solution of the Laplace equation (60) in the cllipsoidal coordinate system, we take
b =Cx !m S e which tends to 0 as A - w0 (63)

where C is constant.
Using the boundary condilion (61) in (62) we get
X ox [~ dt Cx

11X _Ox B . o
Ua;'l. ':5}-. ":[’3241][{' a? ahc where 3
Again
Ez X ., when A =0
gk 2ail
therefore,
bell - dt
Cz.q.._ h — o '54
ey where o, E.b-l.’:J“ (af +0)K, (64)
Thus finally we get
_ abelUx = i B
'1’_2—11., -[lt:|3+t}-"~"—'{h1‘+ljlf:t(;.:-'“}u: (65)
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and on the ellipsoid we have from (64)

UUIU.

= . 0

=
The kinetic energy of the liquid is

O a,plU?

el P e il
T——-ip_[q:a“ds- Elz_an}Ixcuaﬂ,ds,

Since cos 8, ds is the projection on the plane x = 0 of the area ds of the surface, and the

last integral gives the volume of the ellipsoid as ii__r_r:?t_:«_: we find

Moa,U?
_-11’2-:““_}

where M’ is the mass of liguid displaced by ellipsoid.
When the ellipsoid has, in addition, velocity components V, W parallel 1o y-axis and
z-axis, we get, by superposing the results analogous to (66), the velocity potential 1o be
abcll | p= abcV, .« abcW. sx
e X j o S T :-j _.;.{.h__'. e e "'_J. di
- i (82 +K, Z-P,Je(bi+1)K,; Z-yg Sy (c+1)K,

where e, 1o are defined by writing b7 + 1, ¢ + t for a° + t in (5).

2.4 Source, Sink, Doublet

Source :

Source is a point at which liquid is created and distributed at a uniform rate and the
liquid flows outward symmetrically in all directions from the point. If the rate of emission
of the volume of liquid is 4m, then m is called the strength of the source. When the rate -
of emission 1= constant then the source is called steady.

Let us consider a sicady irrotational motion due to the source of strength m. The
volume of the liquid owing oul in a spherical surface of radius r and the source at its center
must be equal to the volume of liguid created per unit time. Let ¢ be the velocity potential
due to a simple source of strength m, and the liquid be at rest at infinity. Then

4mm = flux of liquid across the spherical surface = — % Anr?
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30,
b= M + constant
r

Since constant velocity potential does not change the motion, we may neglect the constant
or may redefine the velocity potential by including the constant in it.

Sink :
A sink is a source of negative strength.

Nate : A source or sink implies creation or annihilation of fluid at a point. Both are points
at which the velocity potential is infinite. A source and sink are purely abstract conception
but they are to be considered due to exigencies of analysis.

Doublet :

A combination of source and sink of equal strength m at a small distance 8s apart.
when the limit of m is infinitely farge and 8s is infinitely small, but més remains finite and
equal to p, then it is called a doublet of strength u and the line &s taken from — m 1o m
is called the axis of the doublet. Let v denotes the direction of the axis of the doublet.
So,

Tl s r i BT &

1 -()
[¢], = lim {—m[lj +m[1} ]- lim | ma 22 7 F o ___ﬂ."*{‘]
. o

-

where the source is at Q and the sink is ar Q' and i the limit both Q and Q' tend o P.
Thus

. ljz_iﬁl‘_
H]F_Hﬁ'v(r r2 dv’
Again, since r = - v cos 8
__ k8 _ hcosd
[¢]P__F"'§';{"Vf“5l”_ 2
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2.5 Images

If in a liquid a surface S can be drawn across which ihete is no flow, then any systems
of sources, sinks and doublets on opposite sides of this surface may be said (o be images
of one another with regard 1o the surface. And if the surface S be regarded as a rigid
boundary and the liquid is removed from one side of it, the motion on the other side will
remain unaltered.

2.5.1 Image of a source with respect to a rigid plane :

Let S(x = 0) be a fixed plane and a source of strength m be placed at Q(a, 0, 0) in
front of 8 (see figure 1.1.). Let Q'i— a, 0, () be another point which is image point of Q
with respect to S. Let P be any fixed point and ry, 15 be the distances of Q. Q' respectively
from P.

r

Qr["aiu!ﬂ.} Q(ﬂ,ﬂ,‘ﬂ}

Figure 2.1

Since the motion {5 irvoiatonal on the right of S{x = 0) due to the source at Q. so
Vi =0inR:x2=0except at Q,
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therefore,

¢ ~ M near Q
0

where r; is the distance from Q (r; — ), and also ¢ is regular at infinity. Again, ? =0
- I

on Six = 0).

MNow we set
m
'¢' e +¢|
I

where ¢, is due to the presence of the rigid wall. Then

V2, =vz¢-v2[rﬂ)=ﬂ

gl
mﬁx(r,)m 5.

rf=(x-a)2+y?+72, rf =(x+a)? +y? +2?

%——ma[]]—mﬂ on 8

ox  axin ) 1}

and

Lo i, e (S
ax  ox axin

Now

m -
We choose ¢, = —, the reason for this is as follows :

Therefore, onx =0

ma i ,
ma _ M2 which is obvious.
I"|3 1'-'.1

F
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Hence

6, =2 inR
Iy
Therefore,
m m
= — 4 —
' hn B

This shows that the image of a point source with respect to a point is a point source of
same strength at the image point. '

2.5.2 Image of a source in front of a sphere :

Let S(r = a) be a fixed sphere of radius a and a source of strength m be placed on
z-axis at a distance f from the center of the sphere, Rir < a), R'(r = a) are two regions
separated by the sphere S(r = a) (See figure 2.2).

Figure 2.2

2

Let Q' be the inverse point of Q with respect to the sphere then, = Ef;'

Let P be any field point, which is at a distance ry and r; from () and Q' respectively
and (r, 8, @) be the co-ordinates of P.

The velocity potential ¢ is composed of two parts, one is ¢y which is due to the source
of strength m and another is ¢; which is due to the presence of spherical boundary. The
later part will be the velocity potential of the required system.
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As the motion is irrodational, the velocity potential ¢ satisfies Laplace's equation
V% =0 in R' except at Q.
and the conditions
{i} ¢ ~ ;5 near ) where r; is the distance from 0,
1
(1i) ¢ 15 regular at infinity
. . & .
{iii) and since 8 is fixed, Tk 0. on 5.
Let us set

|
MNow,
U " SN SR
t, Jri+f?-2rfcos® f eV af [ s fm Fo fe050)
(*—.) -—;--cnsﬂ-t—l

where P,(cos 8) is Legendre's polynomial.
J\Eﬂiﬂ?r}DQ'=%=b{a

i 1 v be
— = =— ¥ —P {cosB).
I+ +fr2 +b2 —2rbcosB I"I..g,:,l'“"'l -

On S,

opy — nat!
e m,,;-. 5 P, (cosB).

Let us take

i

A
&y =3 -2 Py (cos®)
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sothat  is regular al infinity, and on S,

i, ]
[__1*_1__. 3 qu"’* Mhs v s

i) J|-_-, HE dh‘

Thus. we obtain

1A
—mz fml P (cosB) = Z-UH } “P(cosf),

n=ll -y am
Hence
mn_ a2
" na] feer
Thus

s i na?est P, {cmﬂ‘}_mzaznvl P, (cosB) i atri P, (cos®)

n.ﬂ{‘nﬂ-*]fﬂﬂ ot ['rul __r_nTL {'“+]'}En+] rr-|1_l

_my f’ P, (cos8) m an2 P, (cosB)
Ca Z,,( 1’_] poel z{nﬂ}f“*l T

ﬂ-tl

_mb mb w b P (cos }“_E“: pan+d Q}H{EESB:I I'I.'Iﬂ mz 3 Gkt

& = r"*' ; = {n+1)fed ={n+1)rn Fu (6069
m.afl"
i Z P, (cos0)
Set,
i..=—-l—= ! z L7 P, (cos@).
r" {rz 1.12 _ercﬂsa}h'z =l

Hence

b LR

fﬂ Ady = L dxé-r—“r—l P. (cos8).
Therefore,

mu,«'f m b dx
ry adnp
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This shows that the required image consists of the source of strength -"—.'r-?- at the

inverse point Q' and a line distribution of sink of strength — ? per unit length extending

from the center to the inverse point.

2.5.3 Image of a doublet in front of sphere :

Let a doublet of strength p be placed at A on the z-axis, where OA =fand OA' =
f + &f so that m&f —» p, where m is the strength of source and sink. Let B and B be the
inverse points of A and A’ respectively with respect to the sphere. The image of m at A

15 P%El at B and a line distribution of sink of strength — 2. per unit length from O 1o B.
a

The image of —m at A’ is ~—T%_ a1 B, that is —% +£aii and a line source of

f +3f f2
strength r;" per unit length from 0 1o B'.

Compounding this image system, we get a doublet of strength EFE BB’. u source

ma ?—i and a sink —? BB’, all ultimately at the inverse pﬁint. Since OB = a_f :

[ 2]

50

2
BB' = ﬂ!f ?_[' so that the source and sink cancel each other and there remains a doublet

18 35f . A
of strength % af: = m?] L& jf%

1o the given doublet.

at the inverse point in the opposite direction

2.6 Illustrative Solved Examples

Example 1 :

. Show that when a sphere of radius a moves with uniform velocity U through a perfect
incompressible infinite fluid, the acceleration of a particle of the fluid at (r, 0) is



Sodwiion

Superimpos2 a velocity - U both to the sphere and the liquid. This reduces the sphere
to re~i und the velocily potential of the flow is given by {Article 'Liquid steaming past a
fixcd sphere’)

ad .
b= L[[+¥Jumﬂ. (1}
. .
rnu-&T:—U ]—r—1 cps @ (1}
and
: 1 & 2
.rﬁ-——ﬁn (]+r ]smﬂ (3)

Agﬁin, from (2), we have

K 3
f= U(Imf—)smﬂﬂ U-E}—urmsﬂ

al :
= U(I —r)smﬂﬂ +3—“—U1[I f: )msiﬂ, by (2).

Clearly for a poiat (r, 0). the velocity is only along the direction of r and hence the
acceleration will also be only along r.

Thus the required acceleration

= ¥ only at (r, 0)

ol E‘":_‘Uz[:_m) from (3) with 8 =0 =0
T r#
a* ab%
“3U*[,—.—,—1)

Example 2 :

A stream of water of greater depth is flowing with a uniform velocity U over a plane
level bottom. A hemisphere of weight W in water and radius a, rests with its base on the
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bottom. Prove that the average pressure between the base of the hemisphere and the
bottom is less than the fluid pressure at any point of the bottom at a great distance from
the hemisphere if
L W
- S .
v i1ma?p

Solution :
Let water be flowing past a fixed hemisphere with velocity U along z-axis and
(r, 8, ) be the spherical polar co-ordinates of a point referred to the center of the
hemisphere as the origin.
The velocity potential is given by
5

= U[r+.;?]cﬂsﬂ'. (1

8).{lr-)e] -0

(1) )] -

Let q be the velocity at any point of the boundary of the sphere r = a. Then, we have

" 2
gt = {[_%] +[%%)} =§u: sin? B, (2)

In steady motion in absence of external forces, the pressure at any point by Bernoulli's
equation is given by

p 2
Bui p =TI1, g = U at infinity. So (3) gives

Il 1
'5+2-U1=C. ] (4)
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Subtracting (4) from (3), we obtain

. o
F=H+§9U-—§m1+ (5)

Using (2), the pressure p' at any point P on the surface of the sphere r = a is given
by

P*=rj+%pul —%pU1 sin 6. (6)

Relation between (x, y, ) and (r, 8, @) are given by
x=rsinBcosw, y=rsinbsinw; z=rcos0. (7

Direction cosine of OP are (x/r, y/r, z/t) where OP = r = a. Using (2), direction cosine

of OP are (sin B cos B, sin B sin 8, cos ),

Hence the component of p’ along x-axis is p’ sin 8 cos w..
Taking a sin Odew, add as an element on the surface of the hemisphere, the total thrust

on the hemisphere due to water along OX

- _l.:_n_l-m (p'sinBcoswm)(asinBdw.add)

[REEE 1)

=a2f’ I [n + %pl.l‘ - gpm sin? e]s.in= B coswdddem [using (1)]

-niZ

=2a2[" [n +ipuz - -3-;:-1.11 sin? B]sin? 6do

o L TB))

=222 (" l 2)-- P
2a ju [n+2pu P9 —5f

11pU?
=ma?| - .
(-0

Since there is a weight W on the base, the total thrust on the base
11pU?
=mal| [1- W.
s ( z ]+
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Therefore,

ressure on base 1pU2 W
average pressure on the base = E =TT~ +—.
i area of the base 32 ma s
Hence, .
the average pressure < pressure at great distance
if
liplU? w
- -+ —= < T1
32 nal
i, 1F
» J2W
U = =
11pna?
Example 3 :

Incompressible fluid of density p. is contained between two rigid concentric spherical
surfaces, the outer one of mass M, and radius a, the inner one of mass M: and radius b,
A normal blow P is given to the outer surface. Prove that the initial velocities of the two
containing surface (Uf for the outer and V for the inner) are given by the equations

{Mu Zmpajiﬁl +b3]}um2npa-"h3

V=P
3(a?-b?) al -p?

2npb? (2bY +23) 2npalh?
N e
{M” 3(a’ -b?) a’ — b3

Solution :
As in article "Moving Concentric Sphere’, we have

V - U)alh?d
{—E-r‘la—-}cnsﬂ (N

$=— [{‘Uhﬂ-Ua-‘}r+

1
—h?
The normal blow P in the outer imparts velocity U to the outer and V to the inner spherical

surface. Let oy, @, be the impulsive pressure on an element ds of the boundary surface
r=a and r = b respectively. Then

MU=P-[[m cosBds onr=a @
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M,U=P- [[®,cos0ds onr=b (3)
On r=a, from (1)

® =Pt

il 3
[[‘w‘b‘ -Uanui”—'*”i’?_]mse.

2

Hence (2) reduce to
Tt -
MU= F—_L @, cos8.ad0 2 rasin®

2mal
A b

(V-—U)ab?

"
2

[[VbJ —Ua3}a+ Jx;:cusz 0 sin6db

nat 2
=P [3Vb? —U(2a3 +b11]x[—§j.

Therefore,

2wpal {2a? +b? 2apa*h?
{M1+ it }}U—p—‘u':P. @

3(a? —-bi) al-ht
Again,onr=b

(V-=U)a'b

3 j|cusEl.

W, =(pd),op = ﬁ[{wl -Ua?)b+
Hence (3) reduces to

M,V =-[" @, cos6.ad0. 2nbsin0

o 3
21b?2 [(vb-‘ " ms}mu“—b]x_[: cos? Bsin 040

T al b3 ]
2nbip § . } 2]
i I _Uad +=ad>u=wyl-1 =21
a3—h3[vh a +2a (U ) [ 3
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Therefore,

e e —

itat—b ']l

= ———— 1.

a3 —b?

2apb? (2ht +a?d 2rpalths
{Mﬁ apb? ( a’ }}v "o

Example 4 :

Prove thar if two rigid surface of revolution vne of whicih surrounds the other, are
moving along their cormmon axis with veleaties Uy, Us and space between them fil'ed with
homogenous liquid, the momentum of the liquid is MU - MU, where M, M. cre the
masses of liquid which either surface would contain.

Solution :

Let x-axis be taken as the axis of revolution. Due to symmetry, the momcit of
momentum of the liquid along the y-axis and z-axis is zero. The momentum of the houd
along x-axis is

J j jpudxdydz, ()

If ¢ be the potential at any point P(x, y, 2) of the liquid, then u = - % and so (1}
becomes

~J'J-J'p§dxdydz. 12

the integration extends over the whole volume of the liquid.
Using the Green's theorem (2} can be re-written as

J-J'x—g%ds. - (3

where dn is an element of the outward normal at the element of the bounding surface 3.

Hence the momentum of the Iirquid along x-axis is

cd
J-Jvhmﬂ e db. + pjfwm_x}; dﬁz

=0 [ o XU sy +p[ [ x12Usds, 4
- where I, and 1, are cosines of the angles which the outer drawn normals ai dsy, ds. ake
with x-axis.

87



But [,ds; = dxdy and l»ds; = dydz. So (4) reduces to :

The momentum of the liquid along x-axis

= —pjfﬁUldxd}f + pjj xU,dydz

==1J, _I'j'pm,xdy + Ulljpxd}rdz

== Mzuz. 7 MIUh

where M, M; are the masses of the liquids which either surface would contain.

2.7 Model Questions

Short Questions :

3.

Find the solution of Laplace's equation in spherical polar coordinates having axial
symmelry.
Define Stokes® stream function.

Define source, sink and doublet. Hence find the velocity potential for each of
them.

Broad Questions :

I!-

Introducing Stokes’ stream function, discuss the irmotational axi-symmetric motion
of an ideal liquid.
A solid moves along the axis of revolution OX with velocity U in a non-viscous
liquid the motion of the liquid being symmetrical about OX and irrotational.
Discuss the motion.
Find the expression for the velocity potential and the equation of stream lines
for the irrotational motion of a non-viscous liquid at rest at infinity in which a
sphere is moving with uniform velocity, the motion being symmetrical about
Z-axis.
Deduce the equation of motion of a sphere moving in an incompressible ideal
fluid at rest at infinity with velocity U along the axis of z. Hence show that the
effect of the presence of the liquid is to reduce the external force in the ratio
(o—p):(o+ %p}. o and p being the densities of the sphere and the liquid
respectively,
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7.
8.

Discuss the irrotation motion of an ideal fiquid past a fixed sphere in a uniform
stream. Hence find the equation of the lines of flow.

The region between two concentric spheres is filled with a homogeneous
incompressible fluid, the surfaces of the spheres being subjected to given impulses
in the z-direction so that the two spheres start to move with given velacities in the
positive direction at the z-axis. Determine the resulting motion.

Find the image of a source (or sink or doublet) with respect to a ngid plane.

Find the image of a source (or sink or doublet) in front of a sphere.

Problems :

An infinite ocean of an inmnmssiﬁle perfect liquid of density p is streaming past
a fixed spherical obstacle of radius a. The velocity is uniform and equal to U
except in so far as it is disturbed by sphere, and the pressure in the liquid at a
great distance from the obstacles is . Show that the thrust on that half of the
sphere on which the liquid impinges is

S [ i
mna {T] T3 g

Find the pressure at any point of a liquid, of infinite extent and at rest  great
distance, through which a sphere is moving under no extemal forces with constant
velocity U, and show that the mean pressure over the sphere is in defect of the

pressure [T at a great distance by % pU?, it being supposed that [T is sufficiently
large for the pressure everywhere to be positive, that is, that

5
I1=>=pUz
>3P

Liquid of density p fills the space between a solid sphere of radius a and density
p' and a fixed concentric spherical envelope of radius b; prove that the work
done by an impulse which starts the solid sphere with velocity V is
2at +b?
a p).

1 '
jnil"va [gp + ?—_ﬂ_i
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4. The space between two concentric spherical shells of radii a and b{a > b) is filled
with an incompressible fluid of density p and the shells suddenly begin to move
with velocities U, V in the same direction : prove that the resultant impulsive
pressure on the inner shell is

Znpb?

m{hiu—{a! +2b%) V]

5. A sphere of radius a is made to move in incompressible perfect fluid with non-
uniform velocity u along x-axis. If the pressure at infinity is zero, prove that at a
point x in advance of the center

1 i} 2 al
=—pali—4ul| ——— |
P=3P {:-r.1 [13 xﬁ]}

2.8 Summary

In this chapter, we have considered the three-dimensional irrotational motion of an

ideal liguid with special reference to a sphere and a solid of revolution. Notion of source,
sink, doublet and their images with respect to a rigid plane and a sphere has also been
introduced.
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Unit 3 O Vortex Motion

Structure
3.0 Introduction
31 Vortex lines and Vortex tubes
3.2 Rectilinear Vortex '
3.3 Circular Vortex
331 Vortex pair
3.3.2  Vortex doublet
3.4 Infinite row of parallel rectilinear vortices
34.1  Single infinite row
3.4.2 Infinite row of parallel rectilinear vortices (Karman Vortex Street)
3.5 Examples
3.6 Model Questions

3.0 Introduction

1t is well known that for irrotational motion the velocity vector q = (u,v,w) can be
represented in the form of the gradient of a velocity potential ¢ as

q =grad ¢
or, in other words,
u=g,v=%,w=%. 'I:]]
The vorticity is defined to be a vector £ = curl g, whose components are
_Ow &N o _Bu Ow o _Ov_u
ﬂl_a}r 611!}!,- e E}x'nz-ax a}, {2]

The above components vanish when the conditions (1) are satisfied. Thus, for an
irrotational motion when q = gradd,

0 =curl grad $ = 0. {3)
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l'.'i'nnversely, if 2 = 0, then with the aid of vector analysis, it can be shown that equation
(1) will always hold. Thus, in irrotational motion, a velocity potential cerlainly exists.

This chapter will consist of investigation of such motions of a fluid for which the
vorticity vector £ is different from zero at least in some part of the fluid under
consideration. We will call such motions as vortex motions of the fluid.

3.1 Vortex lines and Vortex tubes

A vortex line is a curve in the {luid such that its tangent at any point gives the direction
of the local vorticity. Therefore, the equations of a vortex line have the form

dx  dy.  dz

0,0, a, @
where 2y, €3y, £, are the components of the vorticity vector £2, Note that, the above
equations are analogous to the equations for a streamlines. Portions of the fluid bounded
by vortex lines through every point of an infinitely small closed curves are called vortex
fitaments, or simply vortices, Vortex lines passing through any closed curve form a tubular
surface, which is called a vorfex tube. The fluid contained within such a tube constitutes
what is called a vortex-filament. Let 65, 857 be two sections of a vortex tube and let ng
and n3 be the unit normals to these sections drawn oumwards from the fluid between them.
Also, let 88 be the curved surface of the vortex ube. Then, AS = 85 + 85; + 85 = total
surface arca of the clement. Let AV be the total volume contained in AS. Then

j' n. (S = j’ divedV =0,
AL AN
since div £2 = 0. Thus

Ls n.Qds ='[Es n.mstJ'Ss n.QdS =0
I 2

At each point of 85, n.£2 = 0, since {2 is tangential to the curved surface. Thus
. (n.£2)63) + (n2.£2)852 = 0

approximately to the first order (using the mean value theorem of integral calculus). This
shows that In.C21dS is constant for every section 85 of the vortex tube. Its value is called
the strengeh of the vortex tube. A vortex tube whose strength is unity is called a unir
vortex tube.
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Some properties of vertices :
{1) Vortex lines and tubes move with the fluid.

Let C be any closed curve drawn on the surface of the vortex tube containing un
area S of the tube and not embracing the tbe. As the vortieity vectors are everywhere
lying on the surface S, it follows that, n.£2 = 0. So the circulation I" around C is given
by

Jr q.ds= ‘L n. £3dS = 0.

Afier an interval of time, the same fluid particles form a new surface, say 5"
According to Kelvin's theorem, the circulation around $' must also be zero. As this is
true for any S, the component of vortieity normal to every element of 8" must vanish,
showing that $' must lie on the surface of the vortex tube. Hence, vortex lines and vortex
tubes move with fluid.

{2} Vortex lines and tubes move with the fluid.

Let C be any closed curve drawn on the surface of the vortex tube containing an

area S of the tube and not embracing the tube. As the vorticity vectors are everywhere
lying on the surface S, it follows that n.Q) = 0. So the circulation I' around C is given

by
f:r gq.ds = jﬁ n.QdS=0.

After an interval of time, the same fluid particles form a new surface, say S8'. According
to Kelvin's theorem, the circulation around §' must also be zero. As this is true for any
S, the component of vorticity normal to every element of ' must vanish, showing that
S' must lie on the surface of the vortex tube. Hence, vortex lines and vortex ubes move
with fluid.

(3) A vortex tube cannot originate or end within the fluid. It must either end
at a solid boundary or form a closed loop (a *vortex ring”).

Suppose § is any closed surface containing a volume V. Then
L n.02dS =L divQdV = 0. (5)

Equation (5) shows that the total strength of vortex tubes emerging from § 1s equal to
that entering S. This means that vortex lines and rubes cannot originate or terminate
at internal points in a fluid. They can only form closed curves or terminate on
boundaries.
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{4) Strength of a vortex tube remains constant for all time.

If C is a closed curve embracing once the vortex tube and if S denotes an area
contained in C, then the circulation I” of the fluid velocity q around the vortex tube is
defined as

r=§ q.ds (6)
Then, by Stokes' theoremn

F’Js n.qds. (7

Equation (7) shows that I" is nothing but the strength of vortex tube with surface area
S. Since for an inviseid fluid the circulation around any closed curve in the fluid moving
along with the fluid, remains constant in time, therefore strength of the vortex also remains
constant in time,

The above theorems are known as Helmholtz’s vortex theorems :

We shall assume that the fluid is a single-valued function of time only.

3.2 Rectilinear Vortex

Consider a single tube whose cross-section is a circle of radius a and with its axis
parallel to the axis of z surrounded by unbounded fluid. The motion is similar in all planes
parallel to xy and it has no velocity along the axis of z. By making the area contained within
the tube sufficiently small we see that the distribution producing such a flow must be uniform
along the z-axis. Such a distribution along the z-axis is called a uniform rectilinear or line
vortex. Thus if g = (u, v, w) be the velocity, then w = 0 and u, v are independent of z.
If €1 = (£, £y, £2,) be the vorticity vector, then

dv  du
nx=ﬂ,nr=ﬂ,ﬂl=a-§y—. (8)
The velocity components u, v are related to the stream function y by
u=—%andu=%. (9)
Use of (9) in (8) gives
diy dly
ﬂl:ﬂxl +a}lz" {]ﬂ]
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Thus, y satisfies

(11)

iy +Fﬂw = €1, . on the vortex,
gx® oyl 0,  out side the vortex.

Let P{r, 0) be any point outside the vortex. Since the motion outside the vortex is
irrotational, the velocity potential ¢ exists and

dy _ 159
B roe i

holds, r, 8 being polar coordinates. Since, in the region out side the vortex w is harmonic
so0 we get

ohw row 1@ty
a2 rdr r? 892

If the motion is symmetric about the origin, y must be independent of 8. Then equation

(13) reduces o
1d| dy)_
rdr[rdr]"u

y = ¢ log r, ¢ = constant. (14)

=0. (13)

gving

Using the relation of ¢ and w given by (12) we get
_ ¢ =-ch (15)
Thus the complex potential function w is given by
w=d+iy=-cB+iclogr=iclogz (16)
Let k be the circulation in the circuit enclosing the voriex. Then
k = J-:'[—lg]rdﬂ= 2me

T

50 that

k.
E-zﬂ
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and hence w is given by
.w—znlugz- (17}

This is the complex potential due to a vortex of strength k placed at the origin. If the vortex

be placed at z; = xg + iy, instead of (0, 0), then the complex potential w has the form
ik

w=ﬁ1ng[z—~zﬂ‘}. (18)

Let P(z) = P(x. ¥) be another point in the fluid other than (xg. yg). Then distance rp between
{x, y) and (Xg, ¥p) is given by
ruz =[}r.—xﬂ,}3 +{y—y“}3. (19)

From (18), we see that the stream function y is given by

k
wzﬂlugrn
Thus,
“—_a_w=_ﬂﬂ= k }I-}ru
dy oy 25
and

o g & m gl

Thus the magnitude of the velocity q is given by

k
2w,

q:[uz-l-\"z}ljf .

This is the velocity at any point P(x, y) due to presence of a vortex of strength k at
(% Yol
Note :

If there be any number of vertices of strength k. at 2., s = 1, 2, 3, ..., then the complex
potential at any point z in the fluid is given by
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e I =
W= znzl:kxlngl:z -

and the velocily compornents are given by

1 (Y=—v¥,.) 1 (Xx—x,)
u=—-2-;2k,_T andv=—§ki =

whene
L=k tiysand e2 =(xX—-x, ) +(y—-¥,)°.

Let (u,, v,) denote the velocity components of the vortex of strength k. Then

_Llgy oy, =L owy X —%,)
B P R R} Md?‘_ZnEk' R?

whire
E.. ={K,—Ki}3 +{L!|"|' -3"5]!'

Note that the expressions Tk.u, and Tk,v, will consist of pairs of terms of the forms

k, (x;. -x,) k., (x,-x;)
xRz Ky R:

"

and as such
Zkgug = 0 and kv, = 0.

Hence, regarding k as a mass, the center of gravity of the vortex sysiem, viz.

pozkets o 2KV,
E k L] Z k k1
remains stationary throughout the mation. Note that if Tk, = 0, the center (x, y) is at

3.3 Circular Vortex

Let there be a single cylindrical vontex tube, whose cross-section is a circle of radius
a, surrounded by unbounded fluid.
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The section of the vortex by the plane of the motion is a circle and the arrangement
may therefore be referred to as a eircular vortex.

3.3.1 Vortex pair

{onider the case of two vortices of strengths k and k-, at a distance vy, apart, Let
A, B he their centers, O, the center of the system. The point O divides AB in the ratio
k- : ky. The motion of each vortex as a whole is entirely due to the other, and is therefore
alwavs perpendicular to AB. Hence the two vortices remain ahvays at the same distance
irom one another and rotate with constant angular vcimity about O which is fixed. The

k ¢
velocities at the two vortices at A and B are respectively Eﬂrr and Z_N'Er_ . To obtain the
i [i]

angular velocity w of the system, we divide the velocity of the vortex A by the distance
AQ, where

Thercfore, the angular velocity is given by

o _ velocity of the vortex at A k, +k,

If k;. ks be of the same sign, i.e. if the direction of rotation in the two vortices be the same
then O lies between A and B; otherwise O lies in AB or BA, produced. If k; =-k;, O

is at infinity, However, A, B move with equal velocities Elﬂ'_ at right angles to AB, which
ity

remmaing fixed in direction. Such a combination of two cqulul and opposite vortices may be
called a vortex pair.

3.3.2 Vortex doublet

Consider a vorlex pair, k at ae'* and - k at — ac™ in the complex 7-plane where z
= x + iy. If we let a — 0 and k — = so that 2ak = p is a finite constant, we get a vortex
doublet of strength p inclined at an angle « to the x-axis.

98



The direction of the doublet is determined from the vortex of negative rotation to that
of positive rotation. The complex potential is

| ik . [ : 1
W= iﬂﬁ{k}g{z—ac a ) —log(z+ ae }}

ik( ae plplm aese g

= lim = + .
a0 270 7 2z? z 2z

The stream function 15y = — %Cﬁﬁ{ﬂ — 8.

If, in particular, we take the vortex doublet to be at the origin and along the axis of v,
p sin B Ub? sin B
r

we have qr:--ﬂr—.lfwepul i"-%zl}hl.weuhm'n W=— —~ which is the

stream function for a circular cylinder of radius b moving with velocity U along the x-axis.
Thus the motion due to a circular cylinder is the snme as that due 1o a suitable vortex
doublet placed at the center, and with its axis perpendicular to the direction of motion.

3.4 Infinite row of parallel rectilinear vortices

3.4.1 Single infinite row

Consider an infinite row of vortices each of strength k at the points 0, a, £2a, ...,
+na, ... (as shown in figure 3.1).

¥
K (_li\ K K K
e T o P
H o Nl
—-2a —a 8] a 2a
Figure 3.1
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The complex potential of the (2n + 1) vortices nearest to the origin is

W, = L. Iugz+2k

= logiz—a)+ - +§%Iﬂg{z—na}

+%1ﬂg(2+nl + ﬂ-%iﬂg[z+ na)
ik

=ﬁlﬁg{z{zz —a?)(z?-22a?)(z? -n2a?)}

—’k 2 L2 ) -2 Tk 1ogl 2 22 92,2 22}
e Ing{ LI 31)(1 EEEEJ (] nla?]}+in]ﬂg{n'a 22a2. . n?al},

The constant term may be omitted, so that we write

ik 194 z: z? z?
W, =Emg{?[]_a_=][l‘ﬂlal}“[l-nla? )]» (20)

Now, sin x can be expressed as an infinite product in the form

X: X2 x2
mm_x[l_n_zj[]_ﬂfn:* ]m[l_ninﬂ ] (21

Thﬁs letting n — oo in (20), we get by virtue of {21),

| P
W= 2I_J‘_Itcmgsm[ = ] (22)

Consider the vortex at z = 0. Since its moton is due to the other vortices, the complex
velocity of the vortex at the origin is given by

d ik mg 1k ik [ x nz 1
M P s ey R e s ok < ol 3 =0
d?{i g AR a 2n iﬂgz}! 3 EE{& - a z]z o

Thus the vortex at the origin is at rest. Similarly it can be shown that the remaining vortices
are also at rest. Thus the vortex row induces no velocity in itself.

To determine the stream function we note that
wiz)=d+iy, W(z)=0—1Iy
50 that from (22)

2iy = w(z) - w(Zz) = Eﬂimg{sin -?-'sin “f}

22 2wy  2mx
y Ingz[wsh cos g ]
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For large values of %, we'neg'tecﬂ.' the term Cﬂﬂzﬂ , for its modulus never exceeds unity,
a

and therefore along the streamlines y = constant. Thus at a great distance from the row
the stream lines are parallel to the row.

Again, if v, v5 are the complex velocities at the points z, Z respectively, we have

d | ik . TIF d [ ik . TE
¥+ ¥, ==—4=—=logsin— — | —
Al dz{ln PN Y }z__z dz{!n & ke }hl
. 2WX
ook me ik ik AN
2a a 2z a 2a 2y Ik

cosh—= —cos=—
| a

which is purely imaginary and tends to zero when y tends to infinity. Thus the velocities

along the distant streamlines are parallel to the row but in opposite directions,

3.4.2 Infinite row of parallel rectilinear vortices (Karman Vorfex
Street)

This consists of two parallel infinite rows of the same spacing, say a, but of opposite
vortex strengths k and - k, so arranged that each vortex of the upper row is directly above

dhjl'
55 Q- Q ' O
- 2a -a o 4 2a
——_—
-K i —K —K
—3a7? —af? al? 3a/2
Figure 3.2
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the mid point of the line joining two vortices of the lower row and vice-versa. Taking the
configuration at time t =0, we take the axes as shown in the figure 3.2, the x-axis being
midway between and parallel to the rows which are at the distance b apart. At this instant

the vortices in the upper row are at the points ma + % ib, and those in the lower row at

the points Lm +'§l ]a - %il}, where m = 0, 1, £2, ...

The complex potential at the instant t = 0, by the preceding section is given by

=3k ogin 2o 3k nE[ 2D
wfgnlugamu(z 1]+2n1ngsmﬂ[z 2+2].

Since neither row induces any velocity in itself, the velocity of vortex at z = % - % will

be given by

and similarly the upper row advances with the same velocity. The rows will advance the
distance a in lime t = % and the configuration will be the same afier this interval as at the
initial instant.

Note :

In a Karman vortex street, under the influence of some operation, all or certain of the
vortices may experience small displacements. Then it is possible that with the passage of
time the vortices will remain close to the positions which they would have had if they had
not been subject to displacements. We then say that the motion is stable. If, however, the
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displaced vortices tend to move away from the position cnrre.tpﬁnding o unperiut hed
state, the motion will be called unstable. A necessary condition of stability for the Kaman's

vortex strect 15

r:t::ns:‘nE =42
a

s0 that b= 0.281a

3.5 Nlustrative Solved Examples

Example 1
I

_ax - by _ay +bx

= Pl T L w=0

investigate the nature of motion of the liquid.

Solution :
Given
= ﬂ.?—t!:;_' v:EE..-P__bf_‘w=u_ {|F
X2 +y X +y?
From (1},
u_alx? +y?)-2x(ax-by) _ay? -ax? +2bxy
ax (x2+y2)? T (xT+y?)?
and
ov a(x*+y3)~2ylay +bx) _ax? —ay? ~2bxy
&y (x2+y2)2 T (xT+y2)?
We see that
iy SR
ax  ay

and hence the equation of continuity 1s satisfied by (1). Therefore {1} represents a twao-
dimensional motion and hence vorticity components are given by
M du .
Q,=0,0,=00,-= e i=)
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From (1),

fu _ —b(x?+y?)-2y(ax—by) by? —bx? —2axy
ay (x2 +y2)2 o (xP4y?)2

dv _ b(x*+y?)—2x{ay+bx) by? -bx? -2uxy
ax (x? +y2)2 = (x2 +y2)2
0 that £, =0, Thus

Q,=00,=00,-=
showing that the motion is irrotational,

Example 2

Find the necessary and sufficient conditions that vortex lines may be at night angles 1o
the streamlines.

Solution :
Streamlines and vortex lines are given by
d
dx _dy _dz i
u v o w
and
dx _ 9y _ dz.
a, a, Qq, (2)
respectively. These will be at right angles, if
1|!._ll=‘u"ﬂ,.=“"ﬂ¢- (3}
But
_fw o _du_dw dv  du
0 = L e [ W e,
Ty &Y @ T ax ay (4)
Using (4), (3) may be written as
.:3.!-' & .::11 A & di
e et e i o (5)
r:%r L .-:1 P d & &

which is the necessary and sufficient condition that udx + vdy + wdz may be a perfect
differential. So we may write
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-

udx + vdy+wdz=pd¢=u[§dx +%dy+{'5dz].

Thus the necessary and sufficient conditions that vortex lines may be at right angles to the
streamlines are

&
UsH—, V=d— W=}

o, o
ax iy i

Example 3

When an infinite liquid contains two paraliel, equal and opposite rectilinear vortices at
a distance 2b, prove that the streamlines relative to this system are given by the equation

x?+(y=-b)? y

LT “(y+h)? pT

the origin being the midpoint of the line joining the two vortices, taken as the y-axis.
Solution :

Let there be two rectilinear vortices of strengths k and — k at P(0, b) and P50, — b)
respectively. Thus P\P; = 2b, origin being the midpeint of P;P; and y-axis being taken
along P,P;. Thus we have a vortex pair which will move with a uniform velocity kf2nPP»
or kidnb perpendicular to the line P, P; (ie. along the x-axis). To determine the streamlines
relative to the vortices, we must impose a velocity on the given system equal and opposite

to the velocity k/dxb of motion of the voriex pair. Accordingly, we add a term ﬁ Lo
k8

the complex potential of the vortex pair. Note that

s £( Kz ]
dz\ 4nb /)’
. and hence the term added is justified. So, for the case under consideration, the complex
potential is given by

w=¢+i'¢r=2“;

[ng{z—ib}—%lng{zﬁbh ﬁ

Equating the imaginary parts, we have -

o & 2 _hy2 1=K 2 b2 1o_K2
m—dnlng[x +{y-b)?] 4ntng[1 +(y+b) }+41|:h
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k | 11+{y—b}1_}r
Yo ax| e +|[y+h}|1-rh

Hence the required relative streamlines are given by y = consiant, i.e.,

xi+(y=b)?* y
R +(y+b)?2 +b_c'

Example 4

If n rectilinear vortices of the same strength k are symmetrically arranged as
generators of a circular cylinder of radius a in an infinite liquid, prove that the vortices
will move round the cylinder uniformly in time 8a‘a*{n — 1)k, and find the velocity of
any part, of the liguid.

Solution :
Let us take the origin as the center of the circle of radius a and the x-axis along the

line 8 = (). Suppose that n rectilinear vortices each of strength k be situated at points
Zn=aexp™™™" m=0, 1,2 .., n— 1 on the circumference of the circle. Then the

complex potential due to these n vortices is given by

x n=1
ik Z

W= —— ln At K o 2 mumf A
2n = ol ¥ )

3 n-1 ;
= %—Uﬂ(z—acx;ﬂl“mfﬂ }=%Ing{?." =g ™).

Now the fluid velocity q at any point out of all the n vortices is given by

ik _z+! | [kn z"=—] |

|.n..--..--r-nn-—-——r—-— =

s I
|2mwzh —an | 2mazh —an |

Again the velocity induced at the point z = a, by the other vortices is given by the complex
potential
te 2K,

w'.'ht

5 men )ik ”
log{z® —an ) Zﬁlng{z a)
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so that

—%=%Iﬂgl{z"" +z"“a+~-i +za " +an! ),
Hence
[d_w:] ,E{"'”HH_ZH'“"’E“Ll_““»n_l}
dz ),, 2n na T 4ma
or

oyoivy (8] oo

dz 4 ma
kin=1} :
50 that u; = 0 and vy = Sy P If g, and gg be the radial and transverse velocity
) kin-1I)
components of the velocity at z = a, then we have g, =0 and g = p Due to
symmetry of the problem, it follows that each vortex moves with the same transverse
. k{n-=I . . g 2
velocity %. Hence the required time T is given by
__2ar 8= Za?
k{n-1) (n-1)k’
4 ma

3.6 Model Questions

Short Questions :

1. Define : Vortex {or vortex filament), voriex lines, vortex tubes, rectilinear vortex,
circular vortex, vortex pair, vortex doublet.

2. Prove the following results :
{a) Vortex lines and tubes move with the fluid.
(b)  Strength of a vortex tube is constant alongth the length and for all time,
(c) Vortex lines and tubes cannot originate or terminate at internal points in a

fluid.
3. Find the expression for the angular velocity of a pair of vortices.
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4.

Show that the motion due to a circular cylinder is the same as that due to a
suitable voriex doublet placed at the centre, with its axis perpendicular to the
direction of motion.

Broad Questions :

]l!'

Find the complex potential due to n vortices of strengths ki, ks, ..., k. Hence
find the velocity components of the vortex of strength kg (1 <5 £ n). Also, show
that the centre of gravity of the vortex system remains at rest.

Discuss the motion of an infinite row of vortices, each of strength K situated in a
straight line at equal distance apart. Hence show that, at a great distance from the
row, the stream lines are parallel to the row.

What is meant by Karman Vortex street? Discuss the motion of rectilinear
vortices lying on such a streel. Also deduce the condition of stability of Karman
Vortex streetl.

Problems :

1.
.8

In example | find the velocity potential of the system.

If udx + vdy + wdz = db + Ady, where 8, X, ¥ are function of x, ¥, z. 1,
prove that the the vortex lines at any time are the lines of intersection of the
surfaces

& = constant and ¥ = constant.

If in the solved example-3, the vortices are of the same strength and the spin is
in same sense both, show that the relative streamlines are given by
log{r® +b4 =2b2r? cos20)=(r?/2b)? = constant,

8 being measured from the join of the vortices, the origin being its middle point.
Show also that the surfaces of equipressure al any instant are given by
r' + b* = 2b%rfc0s28 = A(r cos 20 + a’).

Three paraliel rectilinear vortices of the same strength K and in the same sense
meet any plane perpendicular to them in an equilateral triangle of side a. Show
that the vortices all move round the sume cylinder with uniform speed in time

2nal
IK
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5!

If {r,, 8,), (r,, 8,). ... be polar coordinates at time t of a system of rectilinear
vortices of strength k,, k., ..., prove that

D kr? = consantand » kr2@=(1/271) k,k,.

An infinite row of equidistant rectilinear vortices are al a distance a apart. The
vortices are of the same numerical strength k but they are alternately of opposite
signs. Find the complex function that determines the velocity potential and the
streamn function. Show also that, 1if a be the radius of a vortex, the amount of Mow
between two vortex and the next is (k/w) log cot (mow'2a).

An infinite street of linear parallel vortices is given as : x =ra, y = b, strength
k:x =ra, y ==b, strength = - k, where r is any positive or negative integer or
zero. Prove that if the liquid at infinity 15 at rest, the street moves as a whole in
the direction of its length with the speed (k/2a) coth {2nb/a).
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Unit 4 O Surface Waves

Structure

4.0
4.1
4.2
4.3
4.4

4.5
4.6
)
4.8
4.9

4.10
4.11

4.12
4.13
4.14

Introduction

General expression for wave motion

Wave motion in liquid

Standing or Stationary Waves

Surface Waves

4.4.1 Progressive Waves on the surface of water

4.4.2 Progressive Waves on a deep waler

4.4.3 Stationary Waves on the surface of water

The Energy of the progressive waves

Group Velocity

Rate of transmission of energy in simple harmonic surface waves
Progressive -waws reduced to a case of steady motion

Waves at the common surface of two liquids

4.9.1 Waves at the interface of two liguids with upper surface free
Long waves of small elevation

Capillary Waves

4.11.1 Capillary waves in a channel of uniform depth

Examples

Model Questions

Summary

4.0

Introduction

It is a matter of common observation that if a pebble 1s thrown into a pond, then some
disturbance travels radially over the water surface, Such a disturbance 15 known as water
waves. Also, if a piano is played in a room, then sound wave is spread there. The energy
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extracted from the sun is transmitted through waves in ether. All these are examples of
wave motion. Thus we nitice two distinguished features : (a) energy is propagared at
distant peints and (b) the disturbance travels through the medium withowt any
transference of the medium iiself. In fact, these two properties do exist whatever be the
medium which transmits the waves.

4.1 General Expression for Wave Motion

Consider an arbitrary disturbance ¢ moving along the positive x-axis with velocity c.
Thus ¢ is a function of x and 1, say ¢ = f(x, t}. The curve when t =0, i.e., ¢ = fix) is known
as wave profile. I the disturbance moves without changing its shape, then the wave profile
has moved through a distance ct in the positive direction of x-axis at time t. If the distance
measured from the new origin x = ct be denoted by £ so that x ~ ct = £, then the equation
of the wave profile referred to the new origin is ¢ = f{E), in other words, referred to the
original origin, it is

¢ = fix — ct). (1)

Similarly, the equation ¢ = f{x + ct) represents the same disturbances moving in the negative
direction of x-axis with velocity c.

4.2 Wave Motion in Liquid

A wave motion of a liquid acted upon by gravity and having a free surface is a motion
in which the elevation of the free surface above some chosen fixed horizontal plane varies.

Taking the axis of x to be horizontal and the axis of y to be vertically upwards, a
motion in which the equation of the vertical section of the free surface at time t is of the
form

y = a sin (mx — nt), {(2)

where a, m, n are constants, is called a Simple harmonic progressive wave, Since (2) can
be written in the form

= &8 )
3.—asmm(1 m]' (3)

this shows that the wave profile y = a sin mx at t = 0 moves with velocity n/'m (= c, say)
in the positive x-direction. c is called the velociry of propagation of the wave. When
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a=0the pr'uﬁle of the liguid is y = 0, which is the mean level. The quantity a is called
the amplitude of the wave and measures the maximum departure of the actual free surface
from the mean level. The points C] v Coy e of maximum elevation are known as crests and
the points T, T, ... of maximum depression are known as rroughs. The distance between
successive crests is called the wave-lengih and 15 denoted by A. Thus

oA

whes
Again the nature of the free surface (2) remains unchanged by replacing t by t + 2r/n. The
time T = 2n/n is known as the period of the wave. The reciprocal of the period is known
as the frequency it denotes the number of oscillations per second. The angle mx — nt
is known as phase angle. If the equation of wave motion be y = a sin(mx — nt + €), then
€ is called the phase of the wave.

4.3 Standing or Stationary Waves

Two simple harmonic progressive waves of the same amplitude, wave length and
period travel in opposite directions are given by the surface elevation

uf ='%“*“{ m?‘.vm L M3 -:éﬁasin{ mx <+ mnt ).

By the principle of superposition, the resulting surface elevation is represented by the
equalion

n="n, +1, =2asinmxcosnt.

A motion of this type 1s called a stationary or standing wave. An any instant the equation
represents a sine curve but the amplitude 2a cos nt varies continuously.

The points of intersection of the curve with the x-axis are fixed points called nodes.
‘When a progressive train of waves represented by 1, impinges on a fixed vertical barrier
and is there reflected (), the resulting disturbance when a steady state is reached consists
of stationary waves.

Such waves can, for example, be generated by tilting slightly a rectangular vessel
containing water and then restoring it fo the level position. The water level at each end
of the vessel then moves up and down the vertical faces which are loops. Conversely
@ progressive wave can be regarded as due to the superposition of two standing
waves.
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Cy(M4,a) Ca(50/4,a) C3(9h/d,a)

To(304,-a) T3(7A/4,~2)

Figure 4.1

4.4 Surface Waves

Such waves occur at and near the free surface of an unbounded sheet of liquid where
the depth is considerable compared to the wave length. For these waves the vertical
acceleration is comparable with the horizontal acceleration, and so we consider forces both
in horizontal and vertical directions,

The x-axis is taken in the undisturbed surface in the direction of propagation of the
waves and the y-axis vertically upwards. Taking the motion to be irrotational, incom-
pressible and two-dimensional, the velocity potential ¢ exits such that

dig ol o
ekl (S
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throughout the liquid, and
o
e =) 5
on ©)

at o lixed boundary.
The pressure can be obtained from the Bernoulli's equation

p_% -
e gy =g 2 O ) -
o EY—54 (el : (6)
The free surface is a surface of equipressure p = constant, hence on the free surface
%?+u?g+vf?=ﬂ. (N

where u and v are the velocity components on the free surface in x and y directions
respectively. But

ox Ay {

and ut the free surface the relation (7) becomes

)

Let the motion be so small that the squares of small quantities may be omitied. Again,
without loss of generality we may include C(t) in ¢ and then substitute the value of p from
(6) in (9) to gel

e, s, . e | —— —

&t oOx xdt gyl Bydt
Neglecting the second and third terms which are of the same order as q°, we obtain

d? g
¢+g—¢=ﬂ. (1)

ot? dy

This condition holds at the free surface.

524 0632 w[aw ]:ﬂ_ -

If 1y is the elevation of the free surface at time t above the point whose abscissa is x,
the equation of the free surface is given by

y = n(x, 1) = 0. (12)
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But we know that if
Fix,y.0=y-nix. ) =0
is a boundary surface, then we must have

oF ... .dF .. gF
a4y ==0
2 +u o +~..'ﬁ}‘r
0T
én dn
—4u—=v=0, 3
a0 TR (13)
But a 5 and o the tangent of the slope of the free surface which by
hypothesis 1s small so that the second term can be neglected and the equation becomes
. ____ O
n=vs=_— (14)
oy

al the frec surface.
Hence in a wave motion in which the squares of the velocities can be neglected, the
velocity potential must be a solution of Laplace’s equation which makes
Do
n
al a fixed boundary and satisfies (11) and (14) at the free surface of the liquid.

4.4.1 Progressive waves on the surface of water

Consider the propagation of simple harmonic waves of the type
n = a sin{mx — nt) (15}
at the surface of water of uniform depth h, either of unlimited extent or contained in a
channel with parallel vertical sides at right angle 1o the ridges and hollows.
If we assume that there is a solution of the form
¢ = fly) cos(mx — nt}
and substitute in (4) we obtain

=
¢ f_|n3f=;]_ (16}
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so that
fiy) = Ae™ + Be™,
and
& = (Ae™ + Be™) cos(mx — nt).

This value of f must be satisfy (15), 1.e.

=0 when ¥ = = h.

2|8

Hence

.Aﬂ_mh = Ben‘li - -21— ¢ say,

50 that
$ = C cosh m(y + h} cos(mx — nt). (I
Again if we substitute this value in the surface condition (8) putting y = 0, we get
n” = gm tanh mh. (18)
Now let ¢ = nfm and A = 2n/m denote velocity of propagation and the wave length
respectively. Then we get

£

¢? = =tanh mh——-E L
m

n hT (19)

We now determine the constant C of (17) in terms of the amplitude a of the wave.
Using (15) and (17}, the boundary condition (14) gives

= na = — mC sinh mh,

=0 that

na cush m{y + h)
m  sinhmh

= “cos(mx — nt), (20)

or, using { 18) we obtain

is gd coshm(y +h}

s cos(mx — nt), (21)
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The path of the particle

If (x, v) be the coordinates of a particle relative to its mean position, neglecting the

squares of small quantities we may write

F_li__@_ Eli:{:-:s:hm[}r+h}

dt  ox 4 sinh mh Sin(mx =t

dy Eﬂ = — Sinhm{-}:mcus{mx—-m}

dt dy na sinh mh

Integrating above two equations, we get

coshm(y T_E}

X = f —— -cos(mx —nt),
sinh mh cos( }
inh
=a fmti} sin{mx = nt);
sinh mh

so that the particle describes the ellipse

x? y? a?

cosh? m(y+h) " sinh? m(y + h_i ~ sinh2 mh

about its mean position. For a given particle mx — nt plays the part of the eccentric angle

in the ellipse; so that the eccentric angle increases at a uniform rate, as in an orbit described

under a central force varying as the distance.

4.4.2 Progressive waves on a deep water

If the depth h of the water be sufficiently great in comparison with A for e™™" (o be
neglected, then the constant B = 0 in the above case, so that we have instead of (17)

¢ = Ae™ cos(mx — nt)

and instead of (18)

n= grn
or,
gh
2 ==,
g 2n

117

(22)

(23)

(24)



Alsoif
n = a sin{mx — nt)
is the free surface we get from ( 14)
na = mA,

so that

na
& =—e" cos(mx —nt),
m

b= _EI:? &™r cos{ mx — nt), (25)

Following the case 4.4.1 we get in this case for the displacement of a particle from
its mean position

X =ae™ cos(mx—=nt)

y = #ae™ sin{ mx — nt ), (26)

and the path of the particle is a circle

i

,
x> + y* = a’e™,

i
described with uniform angular velocity n, which in this case is equal to (gm)2 or

I
Syl
)’

4.4.3 Stationary waves on the surface of water

Consider a stationary wave of the type
N = a sin mx cos nt. (27

The velocity potential for a system of stationary waves can be deduced from 4.4.1 by
regarding the system as the result of the superposition of two such trains of waves as we
have just been considered moving in opposite directions as explained in Section-4.3.

Then we shall have

_ na coshmiy +h)
" m  sinhmh

b

sinmx sinnt, {2R%)
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Or,

_ ga coshm(y + h}

%in mx sinnt (24
n cash mh

%

for ¢ satisfies {4) and (5). and n and ¢ together satisfy (14).

It is not necessary to regard standing waves as a case of superposifon of progressive
waves. We might investigate this form for ¢ independently starting with the assumption

$ = f(y) sin mx sin nt.
For standing waves in deep water, 25 in 4.4.2, equations (28} and (29) take the
forms

na ! .
h= “,'{{Ew s My sinnt.

i . .
¢ = =—e™ sin mx sinnt.
n

30

Path of the particles :

In this case we have

sh +h :
k= _g*—; —na%msmxﬂm nt.
51
V= -.g% == ﬂlﬁr—“;——mcﬂ&mx sinnt,
r si

s0 that, by integration
coshm(y +h)

X =g——— ——cosmxcosnt,
sinh mh
and
sinhmi{y+h) .
=@ T — KN mx cos nt.
sinhmh
Hence
¥

= tanh mi{ ¥ + v} tan mx,

and since this is independent of t. the motion of each particle is rectifinear, the direction
varying from vertical beneath the crests and troughs [mx ={n+ é ln::I. 10 horizonta
beneath the nodes (mx = nx).
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4.5 The Energy of the Progressive Waves

Kinetic Energy : The kinctic energy possessed by the liquid {per unit thickness),
stretching between two vertical plane situated at a distance of one wave length apart and
perpendicular to the direction of flow, is known as the kinetic energy of the progressive

wave.
Considering a train of progressive waves at the surface of water of depth h. given by
1 = a sin(mx - nt) {31)
and

acoshmi{y+h
=Em-——--—}r-—-—}cqs{ mx—nt ). (32)
n cosh mh

Since the motion is irrotational, the kinetic energy is given by

o= ] o
T=-2pfo="ds, (33)

8n being normal drawn into the liguid and integration being performed along the profile of
a wave length. In this case, we get kinetic energy

1 (*] 4
T=30], ['1’5;1&”“

s a? J-j' cos® ( mx —nt jdx
_ng f -

= épga 2.
Potential Energy :

The potential energy due to the elevated liquid in a wave length (the energy being
calculated relative to the undisturbed state} is known as the potential energy of a
progressive wave,

Let us calculate the potential encrgy of liquid between two vertical planes parallel 1o
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. the direction of propagation at unit distance apart. Then, for a single wave length, the
potential energy is given by

1 &y
Ve

= %pgnzk,
as A = 2m/m.
Total energy per wave length 1s
=T+V
——~1.ng A
2

Hence it follows that the total energy per wave length is half kinetic energy and potential
energy.
The energy of the stationary waves :
The energy of stationary waves may be calculated in the same way. Thus if we take
1] = a sin mx cos nt
and

_pa ﬁ_ushm{y+h]
9= n cosh mh
We find for the potential energy of a wave length

siniaxsinnt .

‘hi'.—-igaj pheoos? nt,
and for the kinetic energy
T I—gal pisin® nt.
4
Total energy per wave length at “n+ hime

=T+ V

!
=—ga<ph.
i
The amounts of kinetic and potential energy change continuously. with the time.
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4.6 Group Velocity

A local disturbance of the surface of still water will give rise to a wave which can be
analyzed into a set of simple harmonic components each of different wave-length. We have
seen that the velocity of propagation depends upon the wave-length and so the waves of
different wave-lengths will be gradually sorted out into groups of waves of approximately
the same wave-length. In the case of water waves, the velocity of the group is, in general,
less than the velocity of the individual waves composing it. What happens in this case is
that the waves in front pass out of the group and new waves enter the group from behind,
The energy within the group remains the same.

We now study the properties of such a group. To this end we examine the disturbance
due to the superposition of two simple harmonic waves of the same amplitude and slightly
different wave lengths,

n; = a sin{mx - nt),
My =asin{{m+dm)x—{n+6n)t}.
The resulting disturbance will be

n=mn+mn:
= Iams%{ x8m — tdn )sin{ mx —nt )
= A sin{imx - nt) {34"}.
where
A=2 acnﬁé—{xﬁm—tﬁn 3 (35

Equation (34) shows that the resulting disturbance is a progressive sine wave whose
amplitude A is not constant but is itself varying as a wave of velocity

Loy o : (36)

This velocity is known as the group velocity.

Since the velocity of propagation of a single wave 1s



we have

dn d de
But & = =™ so that
I
di. _ 2m
dm m2’ 138
Then we get
de di de
- s = O,
e, ':+m::lll:‘.|rn C i (309

For the case of waves on the surface of liquid of depth h, we have

c? o= g tanh mh . ()
m

From {37) and (40}, we have

—lc[l+—' et ] 41
R e (1)

so that the ratio of the group velocity to the wave velocity is given by

c mh

sinh 2 mh

£ |
—_— I —
& Z

or,

I [ 2 mh J

= | T i
©2 =2 T sinh2 mh Ve)
When h is small compared with the wave length, this ratio is unity, so that group
velocity for shallow water is equal to the wave velocity. Also as h increases to infinity the

ralio decreases to Jl; or the group v&lnﬁil}f for deep sea waves is half the wave velocity.
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4.7 Rate of Transmission of Energy in Simple Harmonic
Surface Waves

In a simple harmonic train of surfuce waves, energy crosses a fixed vertical
plane perpendicular to the direction of propagation at an average rare equal io
group velocity.

Proof :

Consider vertical section of the liquid at right angle to the direction of propagation.
Then the rate of transmission of energy is calculated by determining the rate at which the
pressure on one side of the chosen section is doing work on the liquid on the other side.
Now, the velocity potential is given by

B gacoshm{y+h)

i cos{ mx—nt ). {(43)

n coshmh

Again neglecting squares of small quantities the variable part of the pressure is given

by

3 b
Bp=p--.
P FJIErl (44)
and the horizontal velocity is
Z
U= ==, 4
Ox _ (45)
Hence the work done in unit time or the energy carried across unit width of the section
i3
.
W=— bp —d
-[—b P & d
giuZpmsin? (mx—nt) o0
= — cosh® m hid
n cosh 2 mh I-h (x+hiey
g-a-pm sin 2 tmx—nt}[smhzmh h)
= - |
n cosh 2 mh 4m 2 (46)
and since

n* = gm tanh mh,
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this may be wrillen as

e L 2 mh in 2 i
w lgpn m(HsinhEmh]Hn (mx—nt) (47)

The mean value of the expression (47} over a complete period or any number of
complete periods, or any interval that 15 so long compured to a period that the part
corresponding to the fractional part of a period can be neglected in comparison with the
whole, is

.k :1( ﬂ]
e ¢ i Rl ol (48)

But the group velocity ¢, is given by
e 2 mh .
1 _EE(HsinhEmh]' (49)

Since ~:—1 = ¢, then from (48) and (49) we get

L L
W—E(Egpa ]c.- (50)
Since —;-gpa 2 is the whole energy per unit length at any instant. Hence the energy is

transmitted at a rate equal to the group velocity.

4.8 Progressive Waves Reduced to a Case of Steady Motion

In any case in which waves propagate in one direction only without change of shape,
the problem of determining the velocity of propagation can be simplified as follows :
Impose on the whole liquid a velocity equal and opposite to the velocity of propagation
of the waves. Then the wave profile having the same relative velocity as before becomes
fixed in space and the problem becomes one of steady motion. We now illustrate this
technique by means of the following two cases :

Case-1 : Progressive waves on the surface of water
Let progressive waves move on the surface on the channel of uniform depth b and
having parallel vertical walls. Let the progressive waves move towards the positive
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direction of x-axis with velocity ¢ without change of form. Impose on the whole liquid a
velocity ¢ in the negative direction of x-axis. The wave form having the same relative
velocity as before becomes fixed in space and the problem becomes one of steady motion.
As the problem is a two-dimensional one it only remains to determine suitable expressions
for the velocity potential and stream function so that the free surface and the bottom of the
liquid may satisfy the conditions for stream lines.

Consider the complex potential
w = cz + P cos mz - iQ) sin mz,
or,
+iy=c(x+iy)+Pcosm(x+iy)—iQsinm( x+iy).
It gives

é = cx + ( Pcosh my +Qsinh my )cos mx }

y =cy —( Psinhmy +Qcoshmy )sinmx . {51)

Since § and w given by (51) satisfy Laplace’s equation, they represent a possible
motion.

For the bottom to be a stream line we must have y is constant when y = — h so that
= P sinh mh + Q cosh mh = 0.
Hence the expressions (51) may be written as

p=cx+Acoshm(y+h)cosmx,
1|.r=qr—hsinhm{y+hjsinmx.} (52)
Let the free surface be a simple curve
7 = 4 5in mx.
Then from (4) the stream line y = 0 produces
ca — A sinh mh = 0. ’ (53)

neglecting squares of small quantities.
Again, the formula for pressure is

| EI 2 - i
S jr.'._ gt +| — = st A

126



Al the free surface
¥ = asin mx
this becomes

-E--kgasinmx-!-—écl { 1 -2 macoth mhsin mx | = constant, (55)

neglecting a’.
But p is constant at the free surface. Hence (55) holds if the coefficient of sin mx
vanishes, i.e.

g = ¢*m coth mh,

OF,
c? =2l—nlimh2:h (56)
Case-1l : Progressive waves on a deep water
For this case (when h — o) we consider
$ = cx + Ae™ cos mx, {37)
and
W= cy — Ae™ sinmx (58)
with a free surface
1 = a sin mx. (59)
The free surface is the stream line y = 0, if
ca = A, (6l
50 that
=X + Cae ™Y X,
wd ] ®h

The formula for the pressure

gw%{[

ﬁjz +[ﬂ]: }=u~:rn:-;mm
Bx oy



E+g}r+%¢3 {1-2mae™ sinmx+m2alelm }=constanl. (62)

If we neglect the last term on the left, this equation may be written as
p 2 i
—+y{g—mc? )+ mey = constant. (63)
P
This equation not only gives
¢t = E. {64)
m

at the free surface, but also shows that, if c? = B , the pressure is constant along cach
m

stream line. It follows that the solution contained in (56) and (64) can be applied to the

case of any number of liquids of different densities arranged one above the other in

horizontal strata including the case of liguid of continuously varying density since there is

no limit to the thinness of a stream, the only limitations being that the upper surface is free
and the total depth infinite.

4.9 Waves at the Common Surface of Two Liquids

Suppose a liquid of density p' and depth h' to be moving with velocity V' over another
liquid of density p and depth h moving in the same direction with velocity V, the liquids
being bounded above and below by two fixed horizontal planes.

Let ¢ be the velocity of propagation of oscillatory waves at the interface of the two
liguids in the direction in which the liquids are moving. Let the x-axis be in this direction
in the undisturbed interface and y-axis vertically upwards. Let us make the motion steady
by superposing on the whole mass the velocity — c thereby bringing the wave form to rest
In space.

The velocity and stream function for the lower liquid moving with the velocity — (V —c)
in the negative direction of x-axis and given by

p=—(V-cix+Acoshmiy+h jcnsmx,}

Ww=—(V-c)x—Asinhm(y+h)sinmx. (63)
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Similarly expression for upper liquid may be deduced from (65) by replacing V by V'
and h by = h'. Thus we get

'=—(V'—¢)x+A'coshm({y—h')cosmx,
¢ y } (66)

W ==(V'=c)x-A'sinhm(y—h")sinmx.

These expression for y and y’ clearly make the boundaries y = —h, y = h' stream
lines; and if 1} = a sin mx gives the displacement of the common surface and the liquids
do not separate this must be a stream line for both surfaces. We can satisfy this condition
by taking the stream line to be w = ' = (), which gives

—-{(V—-c)a—Asinhmh =0,
 —(V’'-c)a+A’sinhmh’ =0, (h
neglecting the squares of small quantities.
From Bernoulli's equations, we obtain
2 :
E+EH+%{[%J +[g] }nconslam.
; 3"\ T [ (%8)
%+M+%{[EJ +[%—] }=cunstant.
But at the interface
y = 1 = a sin mx.
Then (68) gives (neglecting a%)
~E+gasinmx+%{\-’—c}3 {I—2macnthmhuinmx}=mnstam,
(69)

P

P—;+gasinmx+%f‘ﬂ”-c}2 {qumaculhmh'sinmx}:cnnmam.

Since the pressure is continuous across the interface, putting p = p’ in above equations,
subtracting and then equating to zero the coefficient of sin mx, we obtain

gip-p')1=(V-c)? mpcothmh+(V'-c)? mp’cothmh’ (70}
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This equation determines the velocity of propagation c of waves of length _"mE at the

common sutrface of two streams whose velocities are V, and V'; but it may also be
regarded as the condition for stationary waves at the common surface of two streams
whose velocities are V —c and V' - c.

It should be noticed that in any such case as the above, even when V and V' are both
zero, the tangential velocities on opposite sides of the surface of separation are different
so that this surface constitutes a vortex sheet. :

4.9.1 Waves at the interface of two liquids with upper surface free

Another case of interest is that in which the surface of the upper liquid is free; e.g. a
layer of oil upon water or of fresh water upon salt water,

Let a liquid of density p’ and depth h' lic over another ligquid of density p and depth
h and let both the liquids to be at rest save for wave motion. We assume a common
velocity of wave propagation c at the free surface of the upper liquid and at the common
surface and reverse this velocity on the whole mass so that the motion becomes stcady.
We may take

Yy =cy — A sinh m(y + h) sin mx, (71}
in the lower ligquid, and
n,u’-= ¢y — (B cosh my 4+ C sinh my) sin mx {72)
in the upper liquid.

From (71), it easily follows that the bottom y = — h is a stream surface y = —ch. Let
the common surface be given by

T = a sin mx, (73)
it is also the stream surface w =y’ =0, if
ca - A sinh mh =0, (74)
and
ca-B=0. (75)
Also the free surface
y = h' + b sin mx (76)
is a stream surface y' = constant if
¢b — (B cosh mh' + C sinh mh') = Q. (77}
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From the Bernoulli’s equation for the lower and upper liquids respectively, we have

P I ANGARS
E.'_g!-.f.[_i{(aj +[a_:’-] }—Eﬂﬂ.’i[ﬂl‘ll.

i 2 (
# a P i
e +EBY +—I st + i = constant.
p' 2 ox ay
Substituting from (71) and (72), using that A, B and C are of order a, neglecting

squares of small quantities and equating the values of p and p' at the common interface,
we get

(78)

ga(p—p ) —em(pAcoshmh-p'C)=0, (79
and using (74), {75) and (76), this gives
: b
S } (30)

asinh mh.'

g(p—p'}zczm{pmthmh+p’mth mh'=p

Then using the fact that p’ is constant at the free surface we get
gb = em(B sinh mh" + C cosh mh'}, (81}
and from (74), (75) and (77) we obtain

bsinhmh *
The elimination of the ratio a : b from (80) and (82} gives the equation for ¢, viz.

g=c3m(tﬂlhmh'-;]. (82)

c?m? (pcothmhecothmh’+p’)~cimpg(cothmh+cothmh ') +g? (p-p')1=0
(83)
and the ratio of the amplitudes of the waves is given from (82) by

_13: c2m
a c2?mcoshmh’—gsinhmh " (84)

From (B3) we see that there are two possible velocities of propagation for a given
wave length, provided p > p’.
In the particular case in which the lower liquid is deep we put coth mh = |, The roots
of (83) are then B~
oy G AT pizp’ _
m m(pcothmh'—p")
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The ratio of the amplitudes of the upper and lower waves in the two cases are

g™’ apd —[-ET—I]:'"*'.
[

4.10 Long Waves of Small Elevation

These types of waves arise when the wave length of oscillations is much greater
than the depth of the liquid and the disturbance affects the motion of the whole of the
liquid.

For simplicity, consider the case of waves travelling in a straight canal of depth y,, of
uniform section. Take the x-axis is the direction of the length of the canal and y-axis
vertically upwards and let 1) be the elevation of the free surface above the equilibrium level
at the point whose abscissa is x at time t. We shall consider the case when the wave length
A is large so that (yofA) is very small as well as (n/y,) and (dn/dx).

Then, so far as vertical forces are concemed we may regard the liquid to be in
equilibrium and take the pressure at any point as the statical pressure due to the depth
below the free surface. Thus the pressure p at a point (x, v) is given by

P=Py=Ep(yp + N =Y (85)

where py, supposed constant, is the pressure above the liquid. Hence we have

@ _. .o

Bx EP Bx (86)
which is independent of y. Thus the horizontal acceleration of an element depends on the
difference of pressure at its ends, i.e. ;—'E dx so that the horizontal acceleration of all points

in the same vertical cross-section remains the same. Consequently, those points which are
once jn a vertical plane always remain there.

We now consider a small horizontal cylinder PP’ of liquid of length dx’ and cross-

&

section a, the difference of pressure at its ends being gp —, dx’. Also, if x be the

ox’
abscissa of the vertical plane of particles through P in its equilibrium position and & be the
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horizontal displacement of this plane of particles, then x" = x + £ so that the horizontal

2
acceleration is if’- The equation of motion is, therefore,

atl
gL &
ady' — ==ppo——dx "’
p a2 Ep I’
a2

Assuming the motion to be small and squares y small quantities can be neglected, we
have from (87), by putting x'=x + £

i SO

32 - B a (88)

To form the equation of continuity, we suppose that A is the area of cross-section of
the canal and b is the breadth of the surface. Then, in equilibrium position, the vuiurp:: of
liquid containing between the planes x and x + dx is Adx. Also, at time t, the distance

between the bounding planes of the liguid is dx + o dx and the area of the cross-section

ax
is A + bny. Thus

(A + bn,'r[dx = g%de = Adx

or, A % + I;H'i =0 (B9

where we have neglected product of small quantities. Thus, from (88) we obtain

L LBA TR
at? b &x?
whose solution 18
E =fix —ct) + F(x +ct) {90
where ¢? = gA/b. Equation (90) represents two waves travelling in opposite directions with
veloniti-c s (gATB)F.
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For a canal of rectangular cross-section of depth h, the wave velocity is (Eh)2 which
is half the depth of the liquid.

The elevation n is given by (89) and (90) as
n=—ﬁr’{x—cl}—£F'{x+ct} 91y
b b
Also, the particle velocity is

E=—cf'(x—ct) +cF(x+cth (92)

-'-Llll Capillary Waves

Let there be an interface between two liquids, like water in contact with air. This the
interface will not be a constant pressure surface unless it is a plane surface, Since free
surface 18 a curved surface, so waves would be effected due to a surface tension or energy
per unit area due to capillary forces, the difference of the pressure on opposite sides of

the surface 15 given by
(3+2)
PP

where p and p' are the principal radn of curvature of the surface.

In the case of two-dimensional waves we have p' = = and, if n denote the
elevation,

neglecting squares of small quantities. So if &p, 8p’ denote the variable parts of the pressure
below and above the surface, we have

F4

d i
T 5 +8p-8p'=0 (93)

as the surface condition.
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4.11.1 Capillary waves in a channel of uniform depth

Let us use the method of Section-4.9, reducing the problem to one of steady motion
by superposing a velocity —c¢ on the whole mass, where ¢ is the velocity of propagation.
We have

W =cy — A sinh m{y + h) sin mx, (94)
and for the free surface
1 = a sin mx, (95)
provided
ca—A sinh mh = 0. (96)

Using these in the Bernoulli's equation, the variable part of the pressure is given by

&
Fp+gnsinm+%c3 { 1 -2 amcoth mh sin mx ) = constant, (97}

where the terms containing a* have been neglected. Now if we suppose that pressure
on the upper side of the interface is constant, then 8p’ = 0in (93) and so (93) reduces
in]

d?n
p=-T——
dx?
= T am? sin mx. I (98)

Substizting this value in the last equation and equating to zero the coefficient of sin mix, we
£et

2 E Tm
? =] =420 ltanhmh.
2 =( £+ Jian (99)

When h is large compared to the wave length this becomes

11_£+T_m
ErEEE, (100)
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4.12 Ilustrative Solved Examples

Example 1

When simple harmonic waves of lengih A are propagaied over the surface of deep
water, prove that, at a point whose depth below the undisturbed surface is h, the pressure
at the instants when the disturbed depth of the point is h + 1) bears to the undisturbed
_ pressure at the same point the ratio

i
1+_B—Iﬂ}|ﬂli & 11-
h

atrnospheric pressure and surface tension being neglected.

Solution :
For deep water, the velocity potential 1s given by

na
= 2 amy ens —nt
5] . ® cos{ mx —nt }, (hH
therefore
%: %E’“T sin mx — nt }, (23
Alsn
1 = a sin(mx — nt) ¢?2 o L
mi m
S0 (2) becomes ¥
SR
— = oL
& e (3)
Pressure at any point within the water is given by
p &
———+ gy = C {a constant). 4
o o B ( ) (4)

3o
Wheny =0, p=10, N =0 s0



and hence (4) gives

p= PE*EF‘&'
&t
or,

p=gene™ - gpy, by (3), (5)
Therefore disturbed pressure p; when y = —h is given by

pi = pgne ™ + pgh
=Pgh[l+-;1¢-th (6)

and undisturbed pressure p; at a depth h is given by

Pz = pgh. (7
Therefore

p,:pzz[l+Ee-fﬂh): 1
=[]+-:-e-1“'1ﬂ- J: 1. (since m = 2m/d).

Example 2

Shew that, if the velocity of the wind is just great enough to prevent the propagation
of waves of length A against it, the velocity of propagation of waves with the wind is

I
Pl 2
3“{u+ch} ’

where o is the specific gravity of air and c is the wave velocity when no air is present.

Solution :
If V, V' be the velocities of the lower and upper of two liquids of densities p, p’ and
depths h, ', then
glp - p') = ml(V = ¢,)* p coth mh + (V' = ¢;)* p' coth mh’]. (1
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rl

Given %— = . Since the scais al rest, ¥V =0 and h and h' both — «. Hence (1)

reduces o
g(I-ﬂ]mm{cf +(V'-c, )2 -:r].

If no wind is present, V' = 0, then

¢, =¢.
Therefore from (2),

g(l - o) = m(c? + c’o)
= mc3(1 + a).
When there is no wave, ¢, = 0. From (2),
gl — o) = mV'%g

Now from (2),

g |—ﬂ'}=111({:|2 +\T'1ﬁ+EfE-IV'E|G}
mﬁi"lg:m{c%+V'Iq’rciﬂ'—1vrﬂtﬂ}|1 LlSlﬂg('q:}

cf (1+40)-2V'c,o0=0

.y [(l+o)

v S
Putting this value of V' in (4), we get

g[ I—u’}—mit,_]_-i-n_}:._
gl

0T,

- ¢ (1+a)?
3 - T iy Kl
mcl2{l+aci=mao io2
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ar,

224'3 )
€ l+cc ’
&0 that
1
_ a Yz
::,-Ec:[h_ﬂ]
Example 3

If there be two liquids in a straight channel of uniform section, of densities p,, p; and
depths [, I5, shew that the velocity ¢ of propagation of long waves is given by the eguation

(X
lg 2 F'zt

where p; > py, and it is assume that the liquids do not mix.

Solution :

Proceeding as in 4.9.1 with p = p,, p’ = py, h = I3, W' = [;, we get from (25), of
4.9.1,

¢*m¥(p, coth mb coth ml, + p,) — c*gmp, (coth mi; + coth ml;) + g'p; = p)) = 0.

But for long waves, m is small and so we have

cothmi;| =

approximately. Therefore

c"i
..-F-_l-+p|rn3c“ —E:gl’.:; -]—'l‘—l‘ +E.2 [plipl}=ﬂ‘
Il;f JI.I II

But for long waves,



is small. So neglecting m?, we get

g4 el 1 P
—a| —t— [+]l=—
Lig? & [E] f:] P2

Example 4
Prove that

w =Ams%{z+ih—ct}

is the complex potential for the propagation of simple harmonic surface waves of small high
on water of depth h, the origin being in the undisturbed free surface. Express A in terms

of the surface oscillations.
Solution :

We have for the progressive waves on the surface of water

ag coshm({y+h)
=?_WWE{ mx—mnt ).
Since
cos m{x + iy) = cos mx cosh my — i sin mx sinh my,
we take
W =%%sh{m—m T
Therefore
w=i+ iy
agcos({mx—nt)+im(y+h)}
T cosh mh

ag cos(m{ x+iy)+imh—nt)

n cosh mh
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cusm(x+ih—n—t)
i m

n cosh mh

COos ;f:—('zﬂh ~ct)

n cosh mh
Since
m==F o.M
LT om
Therefore
w =Ar:nsgf{z+ih—ct]
where

ag ag

e ——

" ncoshmh mccoshmh’

4.13 Model Questions

Short Questions :

1. Justify, by examples, the statement *waves are means of propagation of energyy

without any conspicuous movement of particles”.

2. What is meant by wave profile? Find the equation of the wave profile at any

instant of time referred to a given origin.

3. Define : Simple harmonic progressive wave, standing (stationary) wave, surface

wave, group velocity, capillary wave, long wave,

4. Show that a progressive wave can be regarded as due 1o the superposition of two

standing waves,

5. Deduce the surface condition for capillary wave.
Broad Questions :

1. Deduce the condition at the free surface of an unbounded sheet of liquid for two-
dimensional irrotational motion. Hence obtain the same if the motion be small.

141



10.

I]I

12,

13.

Also show that in a wave motion in which the square of the velocities can be
neglected, the velocity potential satisfies Laplace’s equation and its normal
derivative vanishes at a fixed boundary.

Discuss the motion of progressive waves (1) on the surface of water (11} 1n deep

water, Hence find the path of the particles in each case.

Deduce the expressions for the kinetic and potential energies of the progressive
wave.

Discuss the motion of stationary waves (i) on the surface of water, (ii) in deep
water. Hence find the path of the particles in each case.

Find the expression for the group velocity for waves on the surface of liquid of
finite depth. Hence show that the group velocity for shallow water is equal to the
wave velocity but that for deep sea waves is half the wave velocity.

Show that in a simple harmonic train of surface waves, energy crosses a fixed
vertical plane perpendicular to the direction of propagation at an average rate
equal to group velocity.

Find the rate of transmission of energy in simple harmonic surface waves.

Consider waves propagating in one direction without change of shape. Show how
the problems of propugation of surface waves (i) on the surface of water and (i)
in a deep water, can be reduced to the problems of steady motion.

Discuss the motion of oscillatory waves at the interface of two liguids.

Discuss the motion of waves at the interface of two liquids with free upper
surface.

What is meant by long wave? Show that for such waves, the points which he once

in a vertical plane always remain there.

Deduce the equations of motion and continuity for long waves. Hence find the
solution of the equation of motion and interpret the result. Analyse the results for
a canal of rectangular cross-section of given depth.

Discuss the motion of capillary waves in a channel of uniform depth.
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Problems :

1.

Let a shallow trough be filled with oil and water, and let the depth of the water
be k and its density p,. and the depth of the oil h and its density p,. Then shew
that if g be gravity, and v the velocity of propagation of long waves.

v
g

I
Abkp, |3
=%{h+k}+%{{h—k11+ i } .

P

Note that there may be slipping between the two fluids.

Two fluids of densities p , p, have a horizontal surface of separation but are
otherwise unbounded. Shew that when waves of small amplitude are propa-
gated at their common surface, the particles of the two fluids describe circles
about their mean positions; and that at any point of the surface of separation
where the elevation is 1, the particles on either side have a relative velocity
4 e

A

If a channel of rectangular section contain a depth h of hquid of density p on
which is superposed a depth h' of liquid of density p', the free surface of the latter
being exposed to constant atmospheric pressure, prove tIL}at the velocities of
propagation of waves of length Zr/m are given by ¢* = ot where

p(u coth mh — 1) (u coth mh’ — 1) = p'(1 — u?).

Two-dimensional waves of length 2t/m are produced at the surface of separation
of two liguids which are of densities p, p'(p > p') and depths h, h* confined
between two fixed horizontal planes. Prove that, if the potential energy is
reckoned zero in the position of equilibrium, the total energy of the lower liquid
15 to that of the upper in the ratio

p((2p — p'Jeoth mh + p'coth mh') ; p'({p — 2p"Icoth mh' = pcoth mh).

A channel, of infinite length and rectangular section, 15 of uniform depth h and
breadth b in one part but changes gradually to uniform depth h' and breath b’ in
another part, An infinite train of simple harmonic waves travelling in one direction
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only is propagated along the channel. Prove that, if a, 2’ are the heights and 2n/
m, 2r/m’ the lengths of the waves in the two uniform portions,

m tanh mh = m' tanh mh',
and

alb : _a'"?b’
o m.n'[smh2mh+21'nl1jl——-—-——-{_ﬂlsl_"2 T

4.14 Summary

The conception of surface waves relating to progressive and standing waves has been
introduced. A sketch of long waves and capillary waves are also noted.

(sinh2m'h'+2m"h ).
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Unit 5 O Viscous Flow

Structure
5.0 Intreduction
5.1 Viscous incompressible Mlow : Navier-Stokes” equations

5.2

5.3
5.4

5.1.1 Flow through tube of uniform ﬁru&s section

5.1.2 Flow through a pipe of circular cross section

5.1.3  Flow through pipe with annular cross section

5.1.4  Flow through a pipe with elliptic cross section

5.1.5  Flow through a pipe with rectangular cross section
Boundary Layer

5.2.1 Concept of boundary layer

5.2.2 Two dimensional boundary layer flow over a plane wall
5.2.3 Boundary layer over a flat plate : (Blasins Solution)
5.2.4  Shearing stress on the plate

5.2.5 Boundary layer thickness

Maoder]l Questions

Summary

- 5.0 Introduction

Stokes' eguations are of fundamental importance and what else follows will be based on

So far we have considered the motion of an ideal or non-viscous fluid, that is the fluid
which is incapable of exerting shearing (i.e. tangential) stress on any surface with which it
is in contact. We now proceed to introduce the fluid motion for which the normal and the
shearing stresses will be taken into account. The resulting equations, known as Navier-

these equations.
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5.1 Viscous Incompressible Flow : Navier-Stokes® Equations

It has almad}; been seen (see study Maierial PG(MT)035 : Group-B, Page-122) that
for incompressible viscous fluid, Navier-Stokes equation of motion is given by
o I s, W G O -
E+{L?}?=F—E'ﬁ'p+v?~\r (1)
where ¥ is the velocity vector; F, the external force; p, the fluid density; p, the pressure
and v is the kinematic coefficient of viscosity.
Let us now consider some deductions from the equation (1).
Vorticity transport equation
We rewrite the equation (1) in the form
N = ( ] ) O £ -
4 V| =v? |+wxVv=F-=-Vp+VwW2i¥
at P P P

where W = V x ¥ represents the vorticity vector. Assuming conservative nature of external
forces so that F = —‘E’x , 7 being potential function, we have from the above equation

gy 1 P

—+ﬂxif=-‘i.?[x+—- vi +—]+ wWiy,
ot 2 P

Taking curl of both sides, it follows that
%ﬁxmxﬂﬂvzm @

YW= (V. WIVH(V.VIW—(W. V)V

1

Now Vux(wxv)=(V.

=(V.V)W—(W.V)¥V (Using equation of continuity ¥ .5 =0
andtheresull ¢ 5=V Vxv=0)

b

so that equation (2) reduces to

%HT‘ VIw—(w.V)v=vWiw
i.e., %+ﬁ-ﬁ}ﬂ={ﬁ_ﬁ'ﬁ+quﬁ. (3a)
, dw = _
1.E., *'—'E{W_?}v-rv??w {Sb]



where — = — + V.V, Equation (3a) or (3b) 1s known as vorticity equation.

Dissipation of energy

We now calculate the energy which is dissipated in a viscous liquid in motion duc to
internal friction.

Suppose the liquid is contained within a volume V bounded by a closed surface S. The
forces acting on the liquid are the external force F per unit mass, the normal pressure p
on the boundary and the viscous stress acting over the surface S. Now the rate at which
the work is done by these forces is

¥ E v ox ;

i

where T;; is the stress given by

(sce study Material PGIMT)05 :

ov, ov, ]
Group-B, page-122)

T|| "—Pa.l +H[Ehl- +E

1

u being the viscosity.
Let K be the kinetic energy and E be the intrinsic energy so that

[{+E=—|Jp5.§dv +J'|;:||:||:I1\f'+
2'..-' oW

e being the intrinsic energy per unit mass. Then the rate of increase of this total energy is

—{K+E} Ipv—dv+.|-p—d\'—‘[p[ ]dv (5)

1

so that from (4) and (5) we get by using the principle of energy
[o[ %4v sl 5 j Fv, +=2-(T;v,) |dv
Al TR TR bt | LA "

de dv, a
F —— T v, dv =0,
O’f. l{pdt p‘lu' d. p v axi{ |J"r|]} 'l"
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Since this is true for arbitrary volume V, we must have

de _ L
Pgr ~ PRV =Yg+ g “(heve) (6)
Noting that
5} ov; et
T.. . 'I:T —.|. Spmp——
ox aVi) ok, T,
dv,

(see equation (4.16) in study Material PG(MT)05 : Group-B, page 66)
= v v v ov .
where it=£+?.?. [ =l[—'+—J]andwij =l(—{——l]nndﬁinceTH

are symmetric but wy; are skew-symenetric so that T;w;; = 0, we have

i':T-'-f-illrr'I‘-n::--+|::ﬂ.r- dwi'—l-‘-
E".H.j T i i i dt 1

Thus from (5), we get

de dv, dv,
pa-l-:pF-,v,- -pv; —+T,-je-,j +pv; | —=F,

. A
ie. p%"-:-zT,je,J =|:—pﬁij+|.l[¥+ﬁx} He,j
irtol]

dt ox
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v, v\
where @ = %p[ ﬁx_l + E?._J ] 15 the dissipation function and is necessarily positive, In
j i

Cartesian form

r z =
m;y{[ﬂﬂ} +[a_v+@} o225 }
2 dy dx gz cy ox o

Obviously, this expression is never negative and is zero only when each of the squared term
vanishes. It is, therefore, evident that energy is always dissipated and reappears in the form
of heat unless liquid moves without any strain, that is as a rigid body.

We now proceed to discuss the steady motion of incompressible viscous liquids
through different tubes and channel.

5.1.1 Flow through tube of uniform cross-section

We consider steady flow of imcompressible viscous flow through a tube of arbitrary
but uniform cross-section. We take the z-axis along the axis of the pipe. We suppose that
only the non-zero velocity component is along the z-axis, sowe putu=0,v=0, w = 0.

Under this assumption the set of basic equations are

%":_ =0 (equation of continuty), (7
%’E =0 {equation of motion along x-direction), (8)
X

gp‘; =0 (equation of motion along y-direction), (9

1"6p d?w  ad'w ) ) o
O==——4+ v[ P +E£— J (equation of motion along z-direction).  (10)
(7) implies that w is a function of x and y only and is independent of 2. (8) and (9) imply
that p is a function of z only. Thus (10) becomes

orw otw _1dp

fx? gy: pdz
L.H.S. of (11) is a function of x and y whereas R.H.S. of (11) is a function of z only. So
each must be constant. We write

(11}
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l:lp_
5 -

We have considered the negative sign because we expect that pressure P decreases in the
direction of flow. So the equation satisfied by w is

~-P. (12)

a: Alw .
W, otw. _E‘ (13)
ox?  oey? n
This equation is to be solved subject to the boundary condition w = 0 on the surface
of the tube. We simplify the equation by writing

_ 4p
s that
ow _Ov _Px 2*w__ P 0%
dx  8x  2u ax? 2p Ax?
ow_0y Py o2w_ P 0%
ey dy 2p ayr  2p oyr’
Hence,
8w 8w p G*w p drw dily 4y p
+ =——+ -—+ = + -—.
gx?  gy? 2p ox?  2p dy? ox? gyl p
Since
a-w+52w:_g
ox* oy’ B
we obtain
dly adry
q+——=[l. (15)
dx?  dy?

Therefore, y satisfies the two-dimensional Laplace equation with the boundary condition

w=ﬁ(x1+y2,‘l (16)

on the surface of the tube.
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5.1.2 Flow through a pipe of circular cross-section

The equation of the cross-section of the pipe is x* + y* = a%, or r = a. Boundary

: : 2 Pa?
condition iswn%azmr=aTu satisfy this condition we choose w=A = i =
constant, Therefore the velocity w is given by,

v Bty BE B o,
W= 4HEx +y* )= an ‘Hl_‘h!{a r# )

P 1
w{r}=4—ﬂiaz-r— ). (17)

The form (15) shows that the velocity profile is parabolic, i.e., the plot of w against r from
r=10tor = ais of parabolic shape. The volume rate of flow at any cross section is given
by, :

Q=I:w{r}_2n:dr-—..[:%{az -7l JEﬂTdF=EPEZEJ:(aE —r2 yrdr

d -
It is clear that the pressure gradient EP :EEI—P'.-

pressures at two sections at a distance [ apart. So the volume rate of flow.

, where p; and p; are the

Q

4 4 d 4
_ma',_ma [ _P]=na il 550 il

-Bu =3u T dz Bu

This formula is used to determine the coefficient of viscosity p. Since all other
quantities can be measured experimentally, p can be determined from the formula (16).

5.1.3 Flow through a pipe with annular cross-section

Consider the pipe b < r < a, i.e., the region between two concentric cylindersr=b
o

and r = a. The boundary conditions are y = l:h

Fa= i ibe Tiider £ =
H on t ﬂulﬂrﬂ}f 1n rr=a4a.

on the inner cylinderr=b and y =
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An appropriate choice of y satisfying the Laplace equation ina<r<bis y =
A + B In r. By the boundary conditions, we find

2 2
B - A+Binb, 22 - A+Bina.
4p 4u
Thus
gl B P L
4ulInb=Ina ) 4p I(h) *
n =
a
and
; PR
ﬁEPaE —EIna:PH;i— i{b—ﬂ} Ina.
4p 4 | 4p l(h]
n
a
Hence
Pa? P (b?-a2) Pat| P (b?-a?) (r]
- +Blnr — n| —
R O ON L P ON
a
so that
P P
=YY = — . I Y= ——pd
W=y 4u{x +yi)=w 4ur'
Hence
o 2 2 R In{ b/a)
w—4“[(a rt)+(b a }In{r!a} : (19)
The rate of volume flow is given by
z Pr (a? _bz]l
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5.1.4 Flow through a pipe with elliptic cross-section
Let the equation of cross section of the pipe be,

xt  ¥?
A suitable solution for the Laplace equation for this case is
y=A(x?-y?)+B, (21)

To satisfy the boundary condition w = 0 on the surface of the pipe,
VR T HyT)=A(x? -y? )+ B

on the surface of the pipe. This implies that

—P——.- z .l 1:
R

X2 R
1€, —5— 4+_.1.3-__1
P P
Gt
Comparing (18}, (20) we obtain,
PB =a?; P‘E =h?
H—J‘!'h H+ﬂ
P oae B B B
;4.1-1 A—az.4u+.ﬂ._bz
P (L L]=B[“E+’ﬂ3)
U a? b? alb?
=B= Patb? .
Zua? +b?)
Hence,
A=£_£=L___1lhi._=1[;_ 2b? ]__,L(ﬂz-bl]
4p a? 4p 2u(art+bh?) 4p al+h? 4pla? +b? )
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Hence the velocity distribution w is given by

P - Pfa? Pa‘b? 4
it e (L e e e

. Palt? [, x2 ¥°
2u(a?1b?) ‘

The rate of volume flow is give by

M= ity = s (1[5 i s

A 2
Now we consider the ellipse x = ak cos A, y = bi sin A i.e., :—:+§—2= A2, On
T : x2 ¥?
this ellipse, the integrand I_u_l_b_z =]=32 (s:n1 A+cos? A)=1=-22,

Now the area between this ellipse and the neighbouring ellipse (where A is increased
by A + dA) is
= ma(A + dA)b(h + di) — maibd = mab(h + dA)? — maba® = 2mabidh.

Therefore
Palb? v P _a’bd i
= - 2 rabhdh = — AL1-22 )dA
zu{a1+b21-[“ AR R RRT A
- I A¥h
T dpa?ab?’

Now the rate of volume flow through a pipe of circular cross-section with radius (ab)"

T nF )
having the same cross section as the ellipse 1s M, = _ETI a’hbh?

M. _nP a'%h? xﬁ_l-'-‘ 1 _ _2Zab <l
M, 4p a?+b? aP a?b? a2 4+b?
=M< M,

Thus the flux through a circle is greater than that through an ellipse. The physical reason
is that for a given pressure gradient the rate of flow is diminished by the friction. Now this
friction is minimum on a circle because among all curves with the same enclosed area circle
is the curve of minimum periphery.

154



5.1.5 Flow through a pipe with rectangular cross-section

Let the cross section be bounded by the planes x =a, x=—-aand y=b, y ==b.
We have to solve

o
x: ay: (22)
subject to the boundary conditions,
(Dw=0atx=a, x=-a,
_ {iilw=0aty=b,y=-b. (23)
One particular solution of (22) satisfying the boundary condition is
P

W =2—p{a?—x= & (24)
If we write, w = w + w, then,

azwz g- -

CrCRE R e (25)

We solve this equation (25) by method of separation of variables where we assume
wa(X, y) = X()Y(y) (26)
Substituting (26) in (23) we get,

dIH{x)Y{ )+ }{{x}d 'f'[ﬂ

dx? el
1 d2Xix) 1 d?¥(y) . c2
TX(x) dx?  Y(y) dyr "
d2X(x) _ s d*Y(Y) _ s
dx? CRX(x); a2 CIY(y)

Solutions are
Xix) = A cos(C,x) + Bsin(C x), Y(y)=A cos{Cy) + B sin(C_y).
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Now, from the symmetry of the cross section with respect to both x and v, it follows
that w must be even function of x and y. Since, from (3) w/ is already even in x, w, must
be even in x, w, must be even in x and y. Hence

B=D=40,
and therefore

wy = 3 A, cos(C x)cosh(C y).
n=i}

Here,

o e R

W W Wy = (s x}+§a,cmcnx:msnicm.
To satisfy the boundary condition w = 0 at x = a, x =— a, we have

0+ Zﬁu“ cos(C a)cosh(C,y)

i}
= cos(Ca)=0, ie,Cha=(2n+ 1) g ¢ e, Cy=[2n+ I}f;
Therefore
w :u{a X ]-i—é,ﬂu“::.uﬁ{[zu;t}za}cmh{{2n+]'jla},
By the boundary condition (iij) w=0aty =b, y =~ b and we have,

I e e z” { ﬂ} { fr_b}

0 Iu{a X2)+ ) A, cos l.’2|:|+1}|za cosh [2n+|]2n
-F (a2 —x? =z¢' { E} { ﬂ_b}
—? zu[a x%) H=nﬁncnﬁ {2n+|]2a cosh lf2n+|}Ea .

Multiplying both sides by cus{{ln +1) ;—:} and integrating between —a and a, we geL
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—_

_F
2u

P

|

P 1™ sz =qn X
o J‘__l{a X Bcns{{1n+ ]}Ea }dx

=A ¢cash EE}i
n COS {t’lnﬂ}za j

cos? {{'ln +1) E}dx

. 2a? o E}_ 2a _— { E} i
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5.2 Boundary Layer

5.2.1 Concept of boundary layer
The concept of boundary layer was introduced by Prandt] in [904. He assumed that
for fluid with small viscosity, the flow around a solid body can be divided into two parts

(i) a very thin layer called boundary, adjacent to the boundary layer where viscous
effect is important and

(ii) a region outside the boundary where viscous effect is not important the low may
be taken as potential flow. Within this boundary layer, the Navier-Stokes equation can be
simplified. These are called the boundary layer equations.

5.2.2 Two dimensional boundary layer flow over a plane wall

For motion in the (x, y}-plane, the Navier-Stokes equation and the equution of
continuity are,

& ox ey pox \axz ey ) @9
E.p ﬂ \,r?-E —'I.il:lq. _El._t+|=‘|-1y ! {EE}
o ox oy péx | dx?2 dy?

du  dv

——=0,

ax By (29}

Here x-axis is taken along the wall and y-axis normal to the wall, Due 1o no slip
condition, u = v = 0 at the wall. Let U(x, t) be the velocity outside the boundary layer.
Then the velocity component u within the boundary laver nises rapidly from its value O at
the wall to the value U at a small distance &(x). & is the boundary layer thickness and
& << 1. We now calculate the order of magnitude of viscous terms in the equation of
motion. We take u, x, t are of O(1), but y = O(8). By the equation of continuity,

NP o1
dy ax
50 that
v = O{d).
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Then from (1),

du ou _ ﬂ=
S =0m.Z=00 v maa.o[

at )zm‘”*

1
5

diu d2u 1
— =01 =0 — |.
ox 2 { }'ﬁyl G(Ei]
: : diu d%u :
Thus in equation (27) we can naglmm&[cm—-—axz mml;rmdtn——a}rl.ﬂﬂequaxmn (27)
becomes

e U— VYV — = ——— 4 :
a ox Oy  pox oy (30)
If each term of this equation is of the same order of magnitude, we note that,
v=0(82), =8=0(JV)

Now we consider equation (28). We see that,

ov av dv . alv d2v (I]
Vo= 0() 0 X = 0(8), v =0(8), = 0(5), =il &
e = O Yy = O e m B 55 5
Therefore,
1 0p
—= 2 =0(3).
o5 (31)

Thus the pressure gradient normal to the wall is of the order of 6. Hence integrating (31)
with respect to y from y = 0 to 6, the pressure p may be neglected. Thus within the
boundary layer pressure p may be taken as a function of x only and is given by its value
at the outer edge of the boundary layer. Suppose that the flow outside the boundary layer
is given by U{x, t). Then,

(32a)



du o

ox Oy

Boundary conditions are u = v = 0 at y = 0 and u = U(x, t), at y —» co. The first
boundary condition is the usual no ship condition.

=0. (32b)

It may be seen that considerable simplification has been achieved in the above
equations which consist of two equations with two unknowns u and v. However the
equations are still nonlinear, therefore it has been possible to solve the equations directly
only for a limited number of problems, such as flow past a flat plate.

5.2.3 Boundary layer over a flat plate : (Blasius Solution)

The first application of Prandt]’s boundary layer equations was made by H. Blasius
(1908) to determine analytically an expression for thickness of the boundary layer over a
wide semi infinite plate.

Now consider the steady flow of viscous incompressible fluid past a semi infinite plate
placed in the direction of the uniform stream with velocity 1L

We take the origin at the leading edge of the plate, x-axis along the plate and y-axis
normal to the plate. In this case, the potential flow outside the boundary layer equations
4re,

3
u%+u~g§= ‘g:f;‘j [sinct.%-—[i%ull:mnsmnl}, (33a)
du  av
T R |
Ex+3y (33b)

with the boundary conditionu=v=0aty=0andu=U at y — o0,

The equation of continuity can be integrated introducing by the stream function yix, y),

4 AR (34)

H=E E’HI

The charactenistic parameters of this flow are U, x, y and v. i.e., the problem is
determined in terms of these parameters. We may write

I
u=UF (n) where q:[%} y [Hcmﬁ= HL_H 15 the boundary Ia}'crthicknesss].
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Now by the first relation of (33), we get,

12
Y =judy=UjF{n}(%] dq={w:U:|"1_[Ft‘,n}drq

=(vxU)" F(n) [wher&. f{qj:JF{q}dn].

Now,
2y ar o (8)”
Lo Jywe ="t A ’ . ’
u 3 [(vxU) ~ { vxLI) “] fF'"(n)=Uf"(n)
and
v=——%=——{vﬂ}"’3%x—i’zf{ﬂj—{va}'”%g
z_l_(.ut_l)'” . v g (_l][EJ”EL
1 F(n)-(vaU)¥2 £'(n) L e T
_ 1wyt [ " n
Hence,

1z
~3(2) e

fu on 1..M
— =Uf () —=—=U—f"(n)
ox n}ax b (n)

=Uf"[n}%:- = UE"( q}(;"'x-]”: U(%)“Ef"{nl

ou

dy

—. U —_— f _—= U - f S e f &

By 2 i {7'!}63. i (n) 7 (n)
Substituting all these terms into equation (1) we get,

1

=1



I
- (4o 4(2)

P L ”2 rr Pag Ul FF
{—Hn}+nffn?}U[;£j F{n)=v—17n)

Uz 102 u=
s i i et T el fr-fy=_fm
= 2 X nf 2 X C7m ) X

= 2f" =—nf {741 (nf ' =f)=> 20" +£f" =0

d*f d2f
e (35)

=
So the boundary conditions are
(iyf=F=0 at n=0 (ie,y=0),
(i)' =1 as y = m.

Since the equation (35) is a nonlinear equation, its solution in closed form is not
possible. Blasius solved it by power series expansion of f(n) about n = 0. We assume,

Ag Ay
f(n)=Ag+An+—=rnt+—n3+-
21 3!
By the boundary conditions
(()f=0atn=0=A;=0
(ii)f'=0atn=0=A;=0.
Substituting these in the differential equation (33), we get,
A A
)= e e
A A Ag

oy '] k]
LS - B s S —_ i e L S
f{'l'l} a‘!'ll'l'i‘l' n + n- + T -I-] T

" Aa 2 As 3 Ag 4
f{n)=A, +F|..3'I'|+-—§—-'|‘] +Tq- +-_2:I.—“ 3 T

A A
frrr{ Tl}: AJ +A4'|"|.+_2'!|_T|1 +?!'-r|3 A T
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Therefore,

z=:If !_. f:ﬁ

d‘l‘|3 2.

A, Ag A, A,
E[A +.|"'1.,.'|'|+T'r|2 +—r| +*--}+[ T n?+ 3 n? +J

A, +A e B R Bk L e
x[ 2 +A N+ 5 n+ & + TR + ] 0

A A2 ) . (AzA; A,A
:[2h3+2ﬁ4n+ﬁ5q3 +—;-r|3 +--] [ 3 ]'q: [ 24 s, 3]“.!1.....,[:

2

n? (A, 3A,A
=>2A; +2A,m+(A2+2A,) - +[ ;+ i 2 In3 +.=0.

Since, coefficients of various powers of 1 vanish separately,

Ay=0,A, =0,A, =—%A§ Ag =0,

0TI B e P | G SN
=AY {5(A0)" -35(Ar )" + a1 (A N) 4 = APF(A L)
where,

F(AYn)=5;(AYn) ~34(AYn)" +-

Now by the boundary condition that ' — 1 at  —» =, we get,
21 i3
1= lim [A}°F" (AY'n)]

2
e, A, = i
limFE'(n)
I"—:IE
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The value of A; can be obtained numerically. Howarth found that Ay = .332. This
completes the solution which is also known as Blasius solution.

5.2.4 Shearing stress on the plate

The shearing stress on the surface of the plate can be caleulated with the help of the
above solution. The shearing stress is given by

12 12
TOF=H[%] =}IU(%J f"l{[}]=ﬂ.332|.1U(—:-I;)
yail

5.2.5 Boundary layer thickness

Although the velocity u reaches the potential value U asymptotically, a value which is
very near to U is attained within a small distance 8. A measure of this boundary layer
thickness is introduced by the following relation

Ud= I:{ U—uidy.

The right hand side signifies the decrease in the flow rate due to friction within the
boundary layer and the L. H.S. represents the total potential flow that has been displaced
from the wall. So & represents the distance to which the free stream has been displaced
due to boundary layver. This & is called displaced thickness. From a flat plate this given by

- Loy u
5= ( i ]d .
0 u)?
The upper limit of integration is taken as y = oo, because the integrand becomes zero
outside the boundary layer.

5.3 Model Questions
Short Questions :

1. What is the difference between an ideal (non-viscous) and a real (viscous) fluid?
2.  What is meant by dissipation?

3. Discuss the concept of boundary layer.

4.

Define boundary layer thickness, What is its significance?
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Broad Questions :

1.
2,

Deduce the vorticity equation for an incompressible viscous fluid.

Show that a viscous liquid cannot move without dissipation of energy by viscosity
unless it moves as if rigid.

Discuss the motion of an incompressible viscous fluid through (i) a be of
circular, annular, elliptic and rectangular cross-section.

Deduce the equations of motion for two-dimensional boundary layer over a plane
wall,

Firmd the Blasius solution for the two-dimensional boundary tayer flow over a flat

plate.

5.4 Summary

In this chapter, some properties of an incompressible viscous fluid are introduced and
the motion of this fluid through tubes of different cross-section has been discussed. The
concept of boundary layer and its property are also outlined.
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